Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant

Abstract

Heterokaryons are the product of cell fusion without subsequent nuclear or chromosome loss. Decades of research using Sendai-virus or polyethylene glycol (PEG)-mediated fusion in tissue culture showed that the terminally differentiated state of a cell could be altered. But whether stable non-dividing heterokaryons could occur in animals has remained unclear. Here, we show that green fluorescent protein (GFP)-positive bone-marrow-derived cells (BMDCs) contribute to adult mouse Purkinje neurons through cell fusion. The formation of heterokaryons increases in a linear manner over 1.5 years and seems to be stable. The dominant Purkinje neurons caused the BMDC nuclei within the resulting heterokaryons to enlarge, exhibit dispersed chromatin and activate a Purkinje neuron-specific transgene, L7-GFP. The observed reprogrammed heterokaryons that form in brain may provide insights into gene regulation associated with cell-fate plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP-positive Purkinje neurons in the cerebellum.
Figure 2: Marker expression in GFP-positive Purkinje neurons.
Figure 3: Time course of GFP-positive Purkinje neuron appearance.
Figure 4: Fusion of a male BMDC to a female Purkinje neuron.
Figure 5: Changes in nuclear morphology within heterokaryons over time.
Figure 6: Flow cytometry of bone marrow from the L7-GFP mouse.
Figure 7: Evidence for reprogramming of BMDCs after fusion to Purkinje neurons.

Similar content being viewed by others

References

  1. Darlington, G.J., Bernard, H.P. & Ruddle, F.H. Human serum albumin phenotype activation in mouse hepatoma–human leukocyte cell hybrids. Science 185, 859–862 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Ephrussi, B. & Weiss, M.C. Interspecific hybridization of somatic cells. Proc. Natl Acad. Sci. USA 53, 1040–1042 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris, H. Cell fusion: the Dunham lectures (Harvard University Press, Cambridge, 1970).

    Google Scholar 

  4. Peterson, J.A. & Weiss, M.C. Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma–mouse fibroblast hybrids. Proc. Natl Acad. Sci. USA 69, 571–575 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ringertz, N. & Savage, R.E. Cell hybrids (Academic Press, New York, 1976).

    Google Scholar 

  6. Blau, H.M., Chiu, C.P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Spear, B.T. & Tilghman, S.M. Role of α-fetoprotein regulatory elements in transcriptional activation in transient heterokaryons. Mol. Cell Biol. 10, 5047–5054 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright, W.E. Induction of muscle genes in neural cells. J. Cell Biol. 98, 427–435 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Wright, W.E. Expression of differentiated functions in heterokaryons between skeletal myocytes, adrenal cells, fibroblasts and glial cells. Exp. Cell Res. 151, 55–69 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Blau, H.M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell Biol. 112, 781–783 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Blau, H.M., Brazelton, T.R. & Weimann, J.M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Frisen, J. Stem cell plasticity? Neuron 35, 415–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. LaBarge, M.A. & Blau, H.M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. & McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Priller, J. et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733–738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Vassilopoulos, G., Wang, P.R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Manuelidis, L. & Manuelidis, E.E. On the DNA content of cerebellar Purkinje cells in vivo and in vitro. Exp. Neurol. 43, 192–206 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Mares, V., Lodin, Z. & Sacha, J. A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells. Brain Res. 53, 273–289 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. Mann, D.M., Yates, P.O. & Barton, C.M. The DNA content of Purkinje cells in mammals. J. Comp. Neurol. 180, 345–347 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Armengol, J.A. & Sotelo, C. Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in 'in vitro' slices. Brain Res. Dev. Brain Res. 64, 95–114 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Hatten, M.E., Alder, J., Zimmerman, K. & Heintz, N. Genes involved in cerebellar cell specification and differentiation. Curr. Opin. Neurobiol. 7, 40–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez-Gonzalez, A. et al. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295, 1904–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Graham, D.I. & Lantos, P.L. Greenfields Neuropathology (Oxford University Press, New York, 1997).

    Google Scholar 

  28. Weimann, J.M., Charlton, C.A., Brazelton, T.R., Hackman, R.C. & Blau, H.M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA 100, 2088–2093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baron, M.H. & Maniatis, T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46, 591–602 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Blau, H.M. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Blau, H.M. Differentiation requires continuous active control. Annu. Rev. Biochem. 61, 1213–1230 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Tomomura, M., Rice, D.S., Morgan, J.I. & Yuzaki, M. Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur. J. Neurosci. 14, 57–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Eglitis, M.A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. USA 94, 4080–4085 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Rubin, P., Gash, D.M., Hansen, J.T., Nelson, D.F. & Williams, J.P. Disruption of the blood–brain barrier as the primary effect of CNS irradiation. Radiother. Oncol. 31, 51–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Lapham, L.W. Tetraploid DNA content of Purkinje neurons of human cerebellar cortex. Science 159, 310–312 (1968).

    Article  CAS  PubMed  Google Scholar 

  37. Bohm, N. & Noltemeyer, N. Development of binuclearity and DNA polyploidization in the growing mouse liver. Histochemistry 72, 55–61 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Epstein, C.J. & Gatens, E.A. Nuclear ploidy in mammalian parenchymal liver cells. Nature 214, 1050–1051 (1967).

    Article  CAS  PubMed  Google Scholar 

  39. Michalopoulos, G.K. & DeFrances, M.C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, H., Watkins, J.F., Campbell, G.L., Evans, E.P. & Ford, C.E. Mitosis in hybrid cells derived from mouse and man. Nature 207, 606–608 (1965).

    Article  CAS  PubMed  Google Scholar 

  41. Davidson, R.L. & de la Cruz, F. Somatic Cell Hybridization (Ravin Press, New York, 1974).

    Google Scholar 

  42. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Rehen, S.K. et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl Acad. Sci. USA 98, 13361–13366 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Koleckar for her excellent technical support and R. Doyonnas, M. LaBarge, A. Okada, F. Rossi and M. Springer for useful comments. We also thank M. Yuzaki for the generous gift of the L7-pcp-2 transgenic mice. This work was supported by a fellowship from the Wenner-Gren Foundation, Sweden, to C.B.J. and a National Institutes of Health grant AG20961 to J.M.W. and H.M.B. and NIH grants AG09521, HL65572, HD18179, Ellison Medical Foundation grant AG-33-0817, the McKnight Endowment Fund and the Baxter Foundation to H.M.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James M. Weimann or Helen M. Blau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weimann, J., Johansson, C., Trejo, A. et al. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5, 959–966 (2003). https://doi.org/10.1038/ncb1053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing