Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulated exocytosis: a novel, widely expressed system

Abstract

Electrophysiological studies in some secretory and non-secretory cells have identified an extensive form of calcium-induced exocytosis that is rapid (hundreds of milliseconds), insensitive to tetanus toxin and distinct from regulated secretion. We have now identified a marker of the process, desmoyokin-AHNAK, in a clonal derivative of the neuronal cell line, PC12. In resting cells, desmoyokin-AHNAK is localized within the lumen of specific vesicles, but appears on the cell surface during stimulation. Desmoyokin-AHNAK-positive vesicles exist in a variety of cells and tissues and are distinct from the endoplasmic reticulum, Golgi, trans-Golgi, endosomes and lysosomes, and from Glut4 and constitutive secretion vesicles. They seem to be involved in two models of plasmalemma enlargement: differentiation and membrane repair. We therefore propose that these vesicles should be called 'enlargosomes'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ab antigen identification and distribution.
Figure 2: Surface distribution of dA in stimulated PC12-27 cells.
Figure 3: The intracellular distribution of dA is unique.
Figure 4: Expression, intracellular distribution and exocytosis of dA in cells and tissues; effects of differentiation and plasma membrane lesion.

Similar content being viewed by others

References

  1. Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kasai, H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretion function. Trends Neurosci. 22, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Coorssen, J. R., Schmitt, H. & Almers, W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 15, 3787–3791 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ninomiya, Y., Kishimoto, T., Miyashita, Y. & Kasai, H. Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J. Biol. Chem. 271, 17751–17754 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Kasai, H. et al. Multiple and diverse exocytosis in wild-type and defective PC12 cells. Proc. Natl Acad. Sci. USA 96, 945–949 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews, N. W. Regulated secretion of conventional lysosomes. Trends Cell. Biol. 10, 316–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Clementi, E., Racchetti, G., Zacchetti, D., Panzeri, M. C. & Meldolesi, J. Differential expression of markers and activities in a group of PC12 nerve cell clones. Eur. J. Neurosci. 4, 944–953 (1992).

    Article  PubMed  Google Scholar 

  8. Sussman, J., Stokoe, D., Ossina, N. & Shtivelmann, E. Protein kinase B phosphorylates AHNAK and regulates its subcellular localization. J. Cell Biol. 154, 1019–1030 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sköldberg, F. et al. Identification of AHNAK as a novel autoantigen in systemic lupus erythematosus. Biochem. Biophys. Res. Commun. 291, 951–958 (2002).

    Article  PubMed  Google Scholar 

  10. Shtivelman, E. & Bishop, J. M. The human gene AHNAK encodes a large phosphoprotein located primarily in the nucleus. J. Cell Biol. 120, 625–630 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Piper, R. C. & Luzio, J. P. Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2, 612–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Thoidis, G. & Kandrov, K. V. A Glut4-vesicle marker protein, insulin-responsive aminopeptidase, is localized in a novel vesicular compartment in PC12 cells. Traffic 2, 577–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kaether, C., Salm, T., Glombik, M., Almers, W. & Gerdes, H. H. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. Eur. J. Cell Biol. 74, 133–142 (1997).

    CAS  PubMed  Google Scholar 

  14. Malosio, M. L. et al. Neurosecretory cells without neurosecretion: evidence of an independently regulated trait of the cell phenotype. J. Physiol. (Lond.) 520, 43–52 (1999).

    Article  CAS  Google Scholar 

  15. Paolucci, P., Rovere, P., De Nadai, C., Manfredi, A. A. & Clementi, E. Nitric oxide inhibits the tumor necrosis factor alpha-regulated endocytosis of human dendritic cells in a cyclic GMP-dependent way. J. Biol. Chem. 275, 19638–19644 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. McNeil, P. L. & Terasaki, M. Coping with the inevitable: how cells repair a torn surface membrane. Nature Cell Biol. 3, E124–E129 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto, T. et al. Desmoyokin, a 280 kDa keratinocyte plasma membrane-associated protein, is homologous to the protein encoded by human gene AHNAK. J. Cell Sci. 105, 275–286 (1993).

    CAS  PubMed  Google Scholar 

  19. Nie, Z., Ning, W., Amagai, M. & Hashimoto, T. C-terminus of desmoyokin-AHNAK protein is responsible for its translocation between the nucleus and cytoplasm. J. Invest. Dermatol. 114, 1044–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, T., Gamou, S., Shimizu, N., Kitajima, Y. & Nishikawa, T. Regulation of translocation of the desmoyokin-AHNAK protein to the plasma membrane in keratinocytes by protein kinase C. Exp. Cell Res. 217, 258–266 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Haase, H. et al. Signalling from β-adrenoreceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J. 13, 2161–2172 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sekiya, F., Bae, Y. S., Jhon, D. Y., Hwang, S. C. & Rhee, S. G. AHNAK, a protein that binds and activates phospholipase C-γ1 in the presence of arachidonic acid. J. Biol. Chem. 274, 13900–13907 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Gentil, B. J. et al. The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein. J. Biol. Chem. 276, 23253–23261 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ward, D. T., Hammond, T. G. & Harris, H. W. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Annu. Rev. Physiol. 61, 683–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Whitehead, J. P. et al. The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J. Biol. Chem. 276, 27816–27824 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Simpson, F., Whitehead, J. P. & James, D. E. GLUT4—at the cross roads between membrane trafficking and signal transduction. Traffic 2, 2–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee, A., Shih, T., Alexander, E. A. & Schwartz, J. H. SNARE proteins regulate H+-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells. J. Biol. Chem. 274, 26518–26522 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    Article  CAS  Google Scholar 

  30. Almers, W. & Neher, E. Gradual and stepwise changes in the membrane capacitance of rat peritoneal mast cells. J. Physiol. (Lond.) 386, 205–217 (1987).

    Article  CAS  Google Scholar 

  31. Thomas, P. et al. Two types of exocytosis observed in single, rat pancreatic acinar cells. J. Physiol. (Lond.) (in the press).

  32. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Coco, S. et al. Subcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)-VAMP7 in neuronal cells: evidence for a novel membrane compartment. J. Neurosci. 19, 9803–9812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hackam, D. J. et al. v-SNARE-dependent secretion is required for phagocytosis. Proc. Natl Acad. Sci. USA 95, 11691–11696 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mellman, I. Quo vadis: polarized membrane recycling in motility and phagocytosis. J. Cell Biol. 49, 529–530 (2000).

    Article  Google Scholar 

  36. Steinhardt, R. A., Bi, G. & Alderton, J. M. Cell membrane resealing by vesicular mechanism similar to neurotransmitter release. Science 263, 390–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Togo, T., Alderton, J. M., Bi, G. O. & Steinhardt, R. A. The mechanism of facilitated cell membrane resealing. J. Cell Sci. 112, 719–731 (1999).

    CAS  PubMed  Google Scholar 

  38. Detrait, E. R. et al. Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J. Neurosci. Res. 62, 566–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Leoni, C. et al. Neurite extension occurs in the absence of regulated exocytosis in PC12 subclones. Mol. Biol. Cell 10, 2919–2931 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmidt, A., Hannah, M. J. & Huttner, W. B. Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. J. Cell Biol. 137, 445–458 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galfré, G., Howe, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266, 550–552 (1977).

    Article  PubMed  Google Scholar 

  42. Rupnik, M. et al. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc. Natl Acad. Sci. USA 97, 5627–5632 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gatti, G., Podini, P. & Meldolesi, J. Overexpression of calsequestrin in L6 myoblasts: formation of endoplasmic reticulum subdomains and their evolution into discrete vacuoles where aggregates of the protein are specifically accumulated. Mol. Biol. Cell 8, 1789–1803 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Van den Hoff, M. J. B., Moorman, A. F. M. & Lamers, W. H. Electroporation in 'intracellular' buffer increases cell survival. Nucleic Acids Res. 20, 2902 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Kasai and his laboratory staff for their pioneering collaboration and advice; E. Shtivelman and M. Rupnik for generous support; M. Matteoli and G.P. Schiavo for advice, A. Lorusso for participating in some experiments; C. Paolucci for FACS analysis, R. Barsacchi for performing the [Ca2+]i measurements; and D. Dunlap for the critical revision of the text. Imaging experiments were performed within Alembic (Advanced Light and Electron Microscopy Bio-Imaging Center), San Raffaele Scientific Institute. This work, supported by grants from Telethon, the European Union (QLG1–02233), CNR (Ag. 2000 and the CNS degenerative diseases), the Cofin Italian University System (2001.053389-033) and the Armenise–Harvard Foundation, was performed in the framework of the Italian MIUR Center of Excellence in Physiopathology of Cell Differentiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Meldolesi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

SI Figure 1 Distinct labeling patterns of PC12 cells with the anti-dA FEN and KIS antibodies. blotting (D and E). (PDF 1678 kb)

SI Figure 2 Surface appearance of dA in stimulated living cells.

SI Figure 3 Cell types investigated for dA expression

Movie I

The movie illustrates in 3D rendering the distribution of the punctate dA surface staining in a PC12-27 cell first stimulated by caged Ca2+ photolysis and then immunolabeled while still living. (GIF 315 kb)

Movie 2

The movie illustrates in 3D rendering the distribution of neurosecretory and "enlargesomal" vesicles in a wild- type PC12 cell differentiated with NGF. (AVI 2820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgonovo, B., Cocucci, E., Racchetti, G. et al. Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 4, 955–963 (2002). https://doi.org/10.1038/ncb888

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing