Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemomechanical coupling of the forward and backward steps of single kinesin molecules

Abstract

The molecular motor kinesin travels processively along a microtubule in a stepwise manner. Here we have studied the chemomechanical coupling of the hydrolysis of ATP to the mechanical work of kinesin by analysing the individual stepwise movements according to the directionality of the movements. Kinesin molecules move primarily in the forward direction and only occasionally in the backward direction. The hydrolysis of a single ATP molecule is coupled to either the forward or the backward movement. This bidirectional movement is well described by a model of Brownian motion assuming an asymmetric potential of activation energy. Thus, the stepwise movement along the microtubule is most probably due to Brownian motion that is biased towards the forward direction by chemical energy stored in ATP molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanometry of single kinesin molecules.
Figure 2: Step size of the forward and backward movements.
Figure 3: Displacements of kinesin in the dwell time.
Figure 4: Step directionality.
Figure 5: Dwell time between the adjacent stepwise movements.
Figure 6: Stepping kinetics of the bidirectional movements.
Figure 7: Mechanics and energetics.

Similar content being viewed by others

References

  1. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Higuchi, H., Muto, E., Inoue, Y. & Yanagida, T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl Acad. Sci. USA 94, 4395–4400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawaguchi, K. & Ishiwata, S. Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem. Biophys. Res. Commun. 272, 895–899 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T. & Higuchi, H. Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nature Cell Biol. 3, 425–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, MA, 2001).

    Google Scholar 

  19. Fisher, M. E. & Kolomeisky, A. B. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl Acad. Sci. USA 98, 7748–7753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veigel, C. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, Y. Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woledge, R. C., Curtin, N. A. & Homsher, E. Energetic Aspects of Muscle Contraction 167–275 (Academic, London, 1985).

    Google Scholar 

  28. Tomishige, M. & Vale, R. D. Controlling kinesin by reversible disulfide cross-linking: identifying the motility-producing conformational change. J. Cell Biol. 151, 1081–1092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Romberg, L. & Vale, R. D. Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Sosa, H., Peterman, E. J. G., Moerner, W. E. & Goldstein, L. S. B. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature. Struct. Biol. 8, 540–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kitamura, K., Tokunaga, M., Iwane, A. H. & Yanagida, T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Inoue, Y., Iwane, A. H., Miyai, T., Muto, E. & Yanagida, T. Motility of single one-headed kinesin molecules along microtubules. Biophys. J. 81, 2838–2850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rogers, K. R. et al. KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry. EMBO J. 20, 5101–5113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tucker, C. & Goldstein, L. S. B. Probing the kinesin-microtubule interaction. J. Biol. Chem. 272, 9481–9488 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Feynman, R. P. in The Feynman Lectures on Physics Vol. I (eds Feynman, R. P., Leighton, R. B. & Sands, M. L.) (Addison-Wesley, Reading, MA, 1963).

    Google Scholar 

  43. Oosawa, F. Sliding of actin filament on myosin and a flexible ratchet. Jikeikai. Med. J. 36, 219–231 (1989).

    CAS  Google Scholar 

  44. Vale, R. D. & Oosawa, F. Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97–134 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kojima, H., Kikumoto, M., Sakakibara, H. & Oiwa, K. Mechanical properties of single-headed processive motor, inner-arm dynein subspecies-c of Chlamydomonas studied at the single molecule level. J. Biol. Phys. (in the press).

Download references

Acknowledgements

We thank Y. Ishii, F. Oosawa, Y. Inoue and colleagues of Single Molecule Processes Project, and Osaka University for discussions; J. West, E. Muto, H. Kojima and Y. Taniguchi for critically reading the manuscript. This work was partially supported by JSPS Research Fellowships for Young Scientists (M.N.).Correspondence and requests for materials should be addressed to H.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Higuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat Cell Biol 4, 790–797 (2002). https://doi.org/10.1038/ncb857

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing