Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Motoring around the Golgi

Abstract

The Golgi apparatus is a dynamic organelle through which nascent secretory and transmembrane proteins are transported, post-translationally modified and finally packaged into carrier vesicles for transport along the cytoskeleton to a variety of destinations. In the past decade, studies have shown that a number of 'molecular motors' are involved in maintaining the proper structure and function of the Golgi apparatus. Here, we review just some of the many functions performed by these mechanochemical enzymes — dyneins, kinesins, myosins and dynamin — in relation to the Golgi apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Many motors on the Golgi apparatus.
Figure 2: Disruption of motor function results in altered Golgi morphology.
Figure 3: Golgi positioning and vesiculation in different polarized cells.

Similar content being viewed by others

References

  1. Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    CAS  PubMed  Google Scholar 

  2. Ho, W. C., Allan, V. J., van Meer, G., Berger, E. G. & Kreis, T. E. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48, 250–263 (1989).

    CAS  PubMed  Google Scholar 

  3. Rogaliski, A., Bergmann, J. & Singer, S. Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J. Cell Biol. 99, 1101–1109 (1984).

    Google Scholar 

  4. Cooper, M. S., Cornell-Bell, A. H., Chernjavsky, A., Dani, J. W. & Smith, S. J. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum. Cell 61, 135–145 (1990).

    CAS  PubMed  Google Scholar 

  5. Susalka, S., Hancock, W. & Pfister, K. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochim. Biophys. Acta 1496, 76–88 (2000).

    CAS  PubMed  Google Scholar 

  6. King, S. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000).

    CAS  PubMed  Google Scholar 

  7. Roghi, C. & Allan, V. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell Sci. 112, 4673–4685 (1999).

    CAS  PubMed  Google Scholar 

  8. Tai, A. W., Chuang, J.-Z. & Sung, C.-H. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639–19649 (1998).

    CAS  PubMed  Google Scholar 

  9. Habermann, A., Schroer, T., Griffiths, G. & Burkhardt, J. Immunolocalization of cytoplasmic dynein and dynactin subunits in cultured macrophages: enrichment on early endocytic organelles. J. Cell Sci. 114, 229–240 (2001).

    CAS  PubMed  Google Scholar 

  10. Sodeik, B., Ebersold, M. & Helenius, A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136, 1007–1021 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Burkhardt, J., Echeverri, C., Nilsson, T. & Vallee, R. Overexpression of the Dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lippincott-Schwartz, J. et al. Microtubule-dependent retrograde transport of proteins into the ER in the presence of Brefeldin A suggests an ER recycling pathway. Cell 60, 821–836 (1990).

    CAS  PubMed  Google Scholar 

  13. Harada, A. et al. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141, 51–59 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaughan, P., Lesyzk, J. & Vaughan, K. Cytoplasmic dynein intermediate chain phosphorylation regulates binding to dynactin. J. Biol. Chem. 276, 26171–26179 (2001).

    CAS  PubMed  Google Scholar 

  15. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  16. Stephens, D. J. & Pepperkok, R. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J. Cell Sci. 115, 1149–1160 (2002).

    CAS  PubMed  Google Scholar 

  17. King, S. & Schroer, T. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (1999).

    Google Scholar 

  18. Schroer, T. Structure and function of dynactin. Seminars Cell Dev. Biol. 7, 321–328 (1996).

    CAS  Google Scholar 

  19. Karki, S. & Holzbaur, E. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    CAS  PubMed  Google Scholar 

  20. Fouquet, J., Kann, M., Soues, S. & Melki, R. ARP1 in Golgi organisation and attachment of manchette microtubules to the nucleus during mammalian spermatogenesis. J. Cell Sci. 113, 877–886 (2000).

    CAS  PubMed  Google Scholar 

  21. Holleran, E. et al. βIII spectrin binds to the Arp1 subunit of dynactin. J. Biol. Chem. 276, 36598–36605 (2001).

    CAS  PubMed  Google Scholar 

  22. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. F. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).

    CAS  PubMed  Google Scholar 

  23. Devarajan, P., Stabach, P., DeMatteis, M. & Morrow, J. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc. Natl Acad. Sci. USA 94, 10711–10716 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stankewich, M. et al. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 14158–14163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterisation of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organisation during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Quintyne, N. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tynan, S. H., Purohit, A., Doxsey, S. J. & Vallee, R. B. Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J. Biol. Chem. 275, 32763–32768 (2000).

    CAS  PubMed  Google Scholar 

  29. Tai, A., Chuang, J.-Z. & Sung, C.-H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J. Cell Biol. 153, 1499–1509 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoogenraad, C. C. et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein–dynactin pathway by interacting with these complexes. EMBO J. 20, 4041–4054 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–842 (1996).

    CAS  PubMed  Google Scholar 

  32. Grissom, P., Vaisberg, E. & McIntosh, J. Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein. Mol. Biol. Cell 13, 817–829 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl Acad. Sci. USA 98, 7004–7011 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bloom, G. & Endow, S. Motor proteins 1: kinesins. Protein Profile 2, 1105–1171 (1995).

    CAS  PubMed  Google Scholar 

  35. Vallee, R. & Sheetz, M. Targeting of motor proteins. Science 271, 1539–1544 (1996).

    CAS  PubMed  Google Scholar 

  36. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    CAS  PubMed  Google Scholar 

  37. Marks, D., Larkin, J. & McNiven, M. Association of kinesin with the Golgi apparatus in rat hepatocytes. J. Cell. Sci. 107, 2417–2426 (1994).

    CAS  PubMed  Google Scholar 

  38. Johnson, K., Hall, E. & Boekelheide, K. Kinesin localizes to the trans-Golgi network regardless of microtubule organization. Eur. J. Cell Biol. 69, 276–287 (1996).

    CAS  PubMed  Google Scholar 

  39. Gyoeva, F., Bybikova, E. & Minin, A. An isoform of kinesin light chain specific for the Golgi complex. J. Cell Sci. 113, 2047–2054 (2000).

    CAS  PubMed  Google Scholar 

  40. Feiguin, F., Ferreira, A., Kosik, K. S. & Caceres, A. Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J. Cell Biol. 127, 1021–1039 (1994).

    CAS  PubMed  Google Scholar 

  41. Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430 (1999).

    CAS  PubMed  Google Scholar 

  42. White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147, 743–759 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dorner, C. et al. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J. Biol. Chem. 273, 20267–20275 (1998).

    CAS  PubMed  Google Scholar 

  44. Nakajima, K. et al. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol. Cell. Biol. 22, 866–873 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Le Bot, N., Antony, C., White, J., Karsenti, E. & Vernos, I. Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J. Cell Biol. 143, 1559–1573 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Z. & Goldstein, L. S. B. Characterization of the KIF3C neural kinesin-like motor from mouse. Mol. Biol. Cell 9, 249–261 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marra, P. et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biol. 3, 1101–1113 (2001).

    CAS  PubMed  Google Scholar 

  48. Robertson, A. & Allan, V. Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. Mol. Biol. Cell 11, 941–955 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 94, 1828–1833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    CAS  PubMed  Google Scholar 

  51. Opdam, F. et al. The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. J. Cell. Sci. 113, 2725–2735 (2000).

    CAS  PubMed  Google Scholar 

  52. Hill, E., Clarke, M. & Barr, F. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J. 19, 5711–5719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fontijn, R. et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol. Cell. Biol. 21, 2944–2955 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lane, J. & Allan, V. Microtubule-based membrane movement. Biochim. Biophys. Acta 1376, 27–55 (1998).

    CAS  PubMed  Google Scholar 

  55. Kamal, A. & Goldstein, L. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    CAS  PubMed  Google Scholar 

  56. Nelson, W. & Yeaman, C. Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends Cell Biol. 11, 483–486 (2001).

    CAS  PubMed  Google Scholar 

  57. McNiven, M. A. & Marlowe, K. J. Contributions of molecular motor enzymes to vesicle-based protein transport in gastrointestinal epithelial cells. Gastroenterology 116, 438–451 (1999).

    CAS  PubMed  Google Scholar 

  58. Lafont, F. & Simons, K. The role of microtubule-based motors in the exocytic transport of polarized cells. Semin. Cell Dev. Biol. 7, 343–355 (1996).

    CAS  Google Scholar 

  59. Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated triton-insoluble membranes. J. Cell Biol. 155, 77–88 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol. 3, 140–149 (2001).

    CAS  PubMed  Google Scholar 

  61. Klopfenstein, D., Tomishige, M., Stuurman, N. & Vale, R. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Valderrama, F. et al. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur. J. Cell Biol. 76, 9–17 (1998).

    CAS  PubMed  Google Scholar 

  63. di Campli, A. et al. Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil. Cytoskeleton 43, 334–348 (1999).

    CAS  PubMed  Google Scholar 

  64. Holleran, E. A. & Holzbaur, E. L. F. Speculating about spectrin: new insights into the Golgi-associated cytoskeleton. Trends Cell Biol. 8, 26–29 (1998).

    CAS  PubMed  Google Scholar 

  65. Fath, K. R., Trimbur, G. M. & Burgess, D. R. Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. J. Cell Biol. 139, 1169–1181 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stow, J. L. & Heimann, K. Vesicle budding on Golgi membranes: regulation by G proteins and myosin motors. Biochim. Biophys. Acta 1404, 161–171 (1998).

    CAS  PubMed  Google Scholar 

  67. DePina, A. S. & Langford, G. M. Vesicle transport: the role of actin filaments and myosin motors. Microsc. Res. Tech. 47, 93–106 (1999).

    CAS  PubMed  Google Scholar 

  68. Berg, J. S., Powell, B. C. & Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 12, 780–794 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Drenckhahn, D. & Dermietzel, R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J. Cell Biol. 107, 1037–1048 (1988).

    CAS  PubMed  Google Scholar 

  70. Fath, K. R. & Burgess, D. R. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J. Cell Biol. 120, 117–127 (1993).

    CAS  PubMed  Google Scholar 

  71. Fath, K. R., Trimbur, G. M. & Burgess, D. R. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J. Cell Biol. 126, 661–675 (1994).

    CAS  PubMed  Google Scholar 

  72. Montes de Oca, G., Lezama, R. A., Mondragon, R., Castillo, A. M. & Meza, I. Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers. Arch. Med. Res. 28, 321–328 (1997).

    CAS  PubMed  Google Scholar 

  73. Balish, M. F., Moeller, E. F. & Coluccio, L. M. Overlapping distribution of the 130- and 110-kDa myosin I isoforms on rat liver membranes. Arch. Biochem. Biophys. 370, 285–293 (1999).

    CAS  PubMed  Google Scholar 

  74. Narula, N. et al. Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes. J. Cell Biol. 114, 1113–1124 (1992).

    Google Scholar 

  75. Narula, N. & Stow, J. L. Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes. Proc. Natl Acad. Sci. USA 92, 2874–2878 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ikonen, E., Parton, R. G., Lafont, F. & Simons, K. Analysis of the role of p200 containing vesicles in post-Golgi traffic. Mol. Biol. Cell 7, 961–974 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ikonen, E. et al. Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J. Cell Sci. 110, 2155–2164 (1997).

    CAS  PubMed  Google Scholar 

  78. Müsch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell. Biol. 138, 291–306 (1997).

    PubMed  PubMed Central  Google Scholar 

  79. Stow, J. L., Fath, K. R. & Burgess, D. R. Budding roles for myosin II on the Golgi. Trends Cell Biol. 8, 138–141 (1998).

    CAS  PubMed  Google Scholar 

  80. Reck-Peterson, S. L., Provance, D. W. J., Mooseker, M. S. & Mercer, J. A. Class V myosins. Biochim. Biophys. Acta 1496, 36–51 (2000).

    CAS  PubMed  Google Scholar 

  81. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    CAS  PubMed  Google Scholar 

  82. Nascimento, A. A. C., Cheney, R. E., Tauhata, S. B. F., Larson, R. E. & Mooseker, M. S. Enzymatic characterization and functional domain mapping of brain myosin-V. J. Biol. Chem. 271, 17561–17569 (1996).

    CAS  PubMed  Google Scholar 

  83. Johnston, G. C., Prendergast, J. A. & Singer, R. A. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113, 539–551 (1991).

    CAS  PubMed  Google Scholar 

  84. Govindan, B., Bowser, R. & Novick, R. The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128, 1055–1068 (1995).

    CAS  PubMed  Google Scholar 

  85. Reck-Peterson, S. L., Novick, P. J. & Mooseker, M. S. The tail of a yeast class V myosin, Myo2p, functions as a localization domain. Mol. Biol. Cell 10, 1001–1017 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fukuda, M., Kuroda, T. S. & Mikoshiba, K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 12432–12436 (2002).

    CAS  PubMed  Google Scholar 

  87. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    CAS  PubMed  Google Scholar 

  88. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    CAS  PubMed  Google Scholar 

  89. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    CAS  PubMed  Google Scholar 

  90. Cramer, L. P. Myosin VI: roles for a minus end-directed actin motor in cells. J. Cell Biol. 150, F121–F126 (2000).

    CAS  PubMed  Google Scholar 

  91. Buss, F. et al. The localization of myosin VI at the Golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J. Cell Biol. 143, 1535–1545 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Buss, F., Arden, S. D., Lindsay, M., Luzio, J. P. & Kendrick-Jones, J. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J. 20, 3676–3684 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    CAS  PubMed  Google Scholar 

  94. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    CAS  PubMed  Google Scholar 

  95. McNiven, M. A. Dynamin: A molecular motor with pinchase action. Cell 94, 151–154 (1998).

    CAS  PubMed  Google Scholar 

  96. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  97. Henley, J. R. & McNiven, M. A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775 (1996).

    CAS  PubMed  Google Scholar 

  98. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    CAS  PubMed  Google Scholar 

  99. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulin, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  PubMed  Google Scholar 

  100. Cao, H., Thompson, H. M., Krueger, E. W. & McNiven, M. A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, V., Thompson, H. & McNiven, M. Motoring around the Golgi. Nat Cell Biol 4, E236–E242 (2002). https://doi.org/10.1038/ncb1002-e236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1002-e236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing