Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast

An Erratum to this article was published on 01 March 2002

Abstract

Formins have been implicated in the regulation of cytoskeletal structure in animals and fungi. Here we show that the formins Bni1 and Bnr1 of budding yeast stimulate the assembly of actin filaments that function as precursors to tropomyosin-stabilized cables that direct polarized cell growth. With loss of formin function, cables disassemble, whereas increased formin activity causes the hyperaccumulation of cable-like filaments. Unlike the assembly of cortical actin patches, cable assembly requires profilin but not the Arp2/3 complex. Thus formins control a distinct pathway for assembling actin filaments that organize the overall polarity of the cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in the FH2 domain conditionally disrupt the essential function of BNI1. *
Figure 2: Loss of formin function causes rapid disassembly of actin cables.
Figure 3: Either Bni1 or Bnr1 alone is sufficient to support rapid tropomyosin-dependent cable assembly.
Figure 4: Loss of formin function rapidly depolarizes vesicular targeting and misorients the mitotic spindle.
Figure 5: Expression of Bni1 and activated fragments reorganizes actin cable proteins.
Figure 6: Formin-stimulated filament assembly at the bud cortex requires profilin and Bud6 but not the Arp2/3 complex.
Figure 7: Tropomyosin, Mdm20 and profilin have roles in maturation of actin cables.
Figure 8: Model for the role of formins in assembling polarized actin cables to guide overall cell polarity.

Similar content being viewed by others

Notes

  1. *Erratum Figs 1–8 were published incorrectly in both the online and print version of Evangelista et al. (Nature Cell Biol. 4, 32–41). These figures have now been replaced online in both the full text and PDF versions, and a corrected print version of the manuscript will be published in the March issue of Nature Cell Biology.

References

  1. Drubin, D. Cell Polarity (eds Hames, B. & Glover, D.) (Oxford University Press, 2000).

    Google Scholar 

  2. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  3. Adams, A. E. & Pringle, J. R. Relationship of actin and tubulin distribution to bud growth in wild- type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98, 934–945 (1984).

    Article  CAS  Google Scholar 

  4. Amberg, D. C. Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle. Mol Biol Cell 9, 3259–3262 (1998).

    Article  CAS  Google Scholar 

  5. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J Cell Sci 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  6. Geli, M. I. & Riezman, H. Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 111, 1031–1037 (1998).

    CAS  PubMed  Google Scholar 

  7. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147, 791–808 (1999).

    Article  CAS  Google Scholar 

  8. Govindan, B., Bowser, R. & Novick, P. The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128, 1055–1068 (1995).

    Article  CAS  Google Scholar 

  9. Hill, K. L., Catlett, N. L. & Weisman, L. S. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135, 1535–1549 (1996).

    Article  CAS  Google Scholar 

  10. Rossanese, O. W. et al. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153, 47–62 (2001).

    Article  CAS  Google Scholar 

  11. Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).

    Article  CAS  Google Scholar 

  12. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 140, 377–390 (1998).

    Article  CAS  Google Scholar 

  13. Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    Article  CAS  Google Scholar 

  14. Wu, C., Lytvyn, V., Thomas, D. Y. & Leberer, E. The phosphorylation site for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J Biol Chem 272, 30623–30626 (1997).

    Article  CAS  Google Scholar 

  15. Evangelista, M. et al. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148, 353–362 (2000).

    Article  CAS  Google Scholar 

  16. Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148, 363–373 (2000).

    Article  CAS  Google Scholar 

  17. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr Biol 9, 501–504 (1999).

    Article  CAS  Google Scholar 

  18. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol 8, 959–962 (1998).

    Article  CAS  Google Scholar 

  19. Evangelista, M. et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  20. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15, 6060–6068 (1996).

    Article  CAS  Google Scholar 

  21. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16, 2745–2755 (1997).

    Article  CAS  Google Scholar 

  22. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M. & Nasmyth, K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84, 687–697 (1996).

    Article  CAS  Google Scholar 

  23. Ozaki-Kuroda, K. et al. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol Cell Biol 21, 827–839 (2001).

    Article  CAS  Google Scholar 

  24. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J Cell Biol 144, 947–961 (1999).

    Article  CAS  Google Scholar 

  25. Fujiwara, T., Tanaka, K., Inoue, E., Kikyo, M. & Takai, Y. Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae. Mol Cell Biol 19, 8016–8027. (1999).

    Article  CAS  Google Scholar 

  26. Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16, 1857–1870 (1996).

    Article  CAS  Google Scholar 

  27. Ridley, A. J. Stress fibres take shape. Nature Cell Biol 1, E64–66. (1999).

    Article  CAS  Google Scholar 

  28. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol 8, 111–115. (1998).

    Article  CAS  Google Scholar 

  29. Zeller, R. et al. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell Tissue Res 296, 85–93. (1999).

    Article  CAS  Google Scholar 

  30. Petersen, J., Nielsen, O., Egel, R. & Hagan, I. M. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol 141, 1217–1228. (1998).

    Article  CAS  Google Scholar 

  31. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276, 2824–2830 (2001).

    Article  CAS  Google Scholar 

  32. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  33. Vallen, E. A., Caviston, J. & Bi, E. Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11, 593–611 (2000).

    Article  CAS  Google Scholar 

  34. Liu, H. P. & Bretscher, A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 57, 233–242 (1989).

    Article  CAS  Google Scholar 

  35. Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143, 1931–1945 (1998).

    Article  CAS  Google Scholar 

  36. Goud, B., Salminen, A., Walworth, N. C. & Novick, P. J. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753–768 (1988).

    Article  CAS  Google Scholar 

  37. Theesfeld, C. L., Irazoqui, J. E., Bloom, K. & Lew, D. J. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J Cell Biol 146, 1019–1032 (1999).

    Article  CAS  Google Scholar 

  38. Fujiwara, T. et al. Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 9, 1221–1233 (1998).

    Article  CAS  Google Scholar 

  39. Amatruda, J. F. & Cooper, J. A. Purification, characterization, and immunofluorescence localization of Saccharomyces cerevisiae capping protein. J Cell Biol 117, 1067–1076 (1992).

    Article  CAS  Google Scholar 

  40. Pantaloni, D. & Carlier, M. F. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75, 1007–1014 (1993).

    Article  CAS  Google Scholar 

  41. Haarer, B. K. et al. SEC3 mutations are synthetically lethal with profilin mutations and cause defects in diploid-specific bud-site selection. Genetics 144, 495–510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Winter, D. C., Choe, E. Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci USA 96, 7288–7293 (1999).

    Article  CAS  Google Scholar 

  43. Chenevert, J., Valtz, N. & Herskowitz, I. Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae. Genetics 136, 1287–1296. (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gehrung, S. & Snyder, M. The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J Cell Biol 111, 1451–1464 (1990).

    Article  CAS  Google Scholar 

  45. Amberg, D. C., Zahner, J. E., Mulholland, J. W., Pringle, J. R. & Botstein, D. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol Biol Cell 8, 729–753 (1997).

    Article  CAS  Google Scholar 

  46. Kikyo, M. et al. An FH domain-containing Bnr1p is a multifunctional protein interacting with a variety of cytoskeletal proteins in Saccharomyces cerevisiae. Oncogene 18, 7046–7054 (1999).

    Article  CAS  Google Scholar 

  47. Singer, J. M., Hermann, G. J. & Shaw, J. M. Suppressors of mdm20 in yeast identify new alleles of ACT1 and TPM1 predicted to enhance actin-tropomyosin interactions. Genetics 156, 523–534 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  49. Goode, B. L. et al. Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. J Cell Biol 144, 83–98 (1999).

    Article  CAS  Google Scholar 

  50. Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nature Cell Biol 3, 699–707 (2001).

    Article  CAS  Google Scholar 

  51. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cadwell, R. C. & Joyce, G. F. Mutagenic PCR. PCR Methods Appl 3, S136–S140 (1994).

    Article  CAS  Google Scholar 

  53. Adams, A. E., Botstein, D. & Drubin, D. G. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 354, 404–408 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ruth Collins, John Cooper, Brian Haarer, Tim Huffaker, Daniel Schott, Janet Shaw and Jason Singer for reagents, Sarang Kulkarni for assistance with Deltavision imaging and Bryce Nelson for critical reading of the manuscript. This work was supported by the NIH (GM39066 to A. B.); by grants from NCIC and NSERC to C. B.; and by an NCIC graduate student fellowship to M. E.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Boone or Anthony Bretscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evangelista, M., Pruyne, D., Amberg, D. et al. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4, 32–41 (2002). https://doi.org/10.1038/ncb718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing