Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technology Review
  • Published:

From fixed to FRAP: measuring protein mobility and activity in living cells

Abstract

Experiments with fluorescence recovery after photobleaching (FRAP) started 30 years ago to visualize the lateral mobility and dynamics of fluorescent proteins in living cells. Its popularity increased when non-invasive fluorescent tagging became possible with the green fluorescent protein (GFP). Many researchers use GFP to study the localization of fusion proteins in fixed or living cells, but the same fluorescent proteins can also be used to study protein mobility in living cells. Here we review the potential of FRAP to study protein dynamics and activity within a single living cell. These measurements can be made with most standard confocal laser-scanning microscopes equipped with photobleaching protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence recovery after photobleaching (FRAP).

References

  1. Edidin, M., Zagyansky, Y. & Lardner, T. J. Measurement of membrane protein lateral diffusion in single cells. Science 191, 466–468 (1976).

    Article  CAS  Google Scholar 

  2. Axelrod, D. et al. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl Acad. Sci. USA 73, 4594–4598 (1976).

    Article  CAS  Google Scholar 

  3. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

  4. Salome, L., Cazeils, J. L., Lopez, A. & Tocanne, J. F. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur. Biophys. J. 27, 391–402 (1998).

    Article  CAS  Google Scholar 

  5. Periasamy, N. & Verkman, A. S. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75, 557–567 (1998).

    Article  CAS  Google Scholar 

  6. Arrio-Dupont, M., Foucault, G., Vacher, M., Douhou, A. & Cribier, S. Mobility of creatine phosphokinase and β-enolase in cultured muscle cells. Biophys. J. 73, 2667–2673 (1997).

    Article  CAS  Google Scholar 

  7. Periasamy, N., Bicknese, S. & Verkman, A. S. Reversible photobleaching of fluorescein conjugates in air-saturated viscous solutions: singlet and triplet state quenching by tryptophan. Photochem. Photobiol. 63, 265–271 (1996).

    Article  CAS  Google Scholar 

  8. Gribbon, P. & Hardingham, T. E. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J. 75, 1032–1039 (1998).

    Article  CAS  Google Scholar 

  9. Arrio-Dupont, M., Cribier, S., Foucault, G., Devaux, P. F. & d'Albis, A. Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophys. J. 70, 2327–2332 (1996).

    Article  CAS  Google Scholar 

  10. Reits, E. A. J., Benham, A. M., Plougastel, B., Neefjes, J. & Trowsdale, J. Dynamics of proteasome distribution in living cells. EMBO J. 16, 6087–6094 (1997).

    Article  CAS  Google Scholar 

  11. Kao, H. P., Abney, J. R. & Verkman, A. S. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell Biol. 120, 175–184 (1993).

    Article  CAS  Google Scholar 

  12. Swaminathan, R., Bicknese, S., Periasamy, N. & Verkman, A. S. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys. J. 71, 1140–1151 (1996).

    Article  CAS  Google Scholar 

  13. Livneh, E. et al. Large deletions in the cytoplasmic kinase domain of the epidermal growth factor receptor do not affect its lateral mobility. J. Cell Biol. 103, 327–331 (1986).

    Article  CAS  Google Scholar 

  14. Saffman, P. G. & Delbruck, M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 3111–3113 (1975).

    Article  CAS  Google Scholar 

  15. Vaz, W. L., Criado, M., Madeira, V. M., Schoellmann, G. & Jovin, T. M. Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers. A study using fluorescence recovery after photobleaching. Biochemistry 21, 5608–5612 (1982).

    Article  CAS  Google Scholar 

  16. Kucik, D. F., Elson, E. L. & Sheetz, M. P. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys. J. 76, 314–322 (1999).

    Article  CAS  Google Scholar 

  17. Partikian, A., Olveczky, B., Swaminathan, R., Li, Y. & Verkman, A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell Biol. 140, 821–829 (1998).

    Article  CAS  Google Scholar 

  18. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  Google Scholar 

  19. Nehls, S. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nature Cell Biol. 2, 288–295 (2000).

    Article  CAS  Google Scholar 

  20. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  Google Scholar 

  21. Edidin, M., Zuniga, M. C. & Sheetz, M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc. Natl Acad. Sci. USA 91, 3378–3382 (1994).

    Article  CAS  Google Scholar 

  22. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  Google Scholar 

  23. Dundr, M., Misteli, T. & Olson, M. O. The dynamics of postmitotic reassembly of the nucleolus. J. Cell Biol. 150, 433–446 (2000).

    Article  CAS  Google Scholar 

  24. Marguet, D. et al. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 11, 231–240 (1999).

    Article  CAS  Google Scholar 

  25. Vasudevan, C. et al. The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity. J. Cell Sci. 111, 1277–1285 (1998).

    CAS  PubMed  Google Scholar 

  26. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 (1996).

    Article  CAS  Google Scholar 

  27. Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  Google Scholar 

  28. Dayel, M. J., Hom, E. F. & Verkman, A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999).

    Article  CAS  Google Scholar 

  29. Alecio, M. R., Golan, D. E., Veatch, W. R. & Rando, R. R. Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes. Proc. Natl Acad. Sci. USA 79, 5171–5174 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Griekspoor for the illustration, and A. Benham, K. Jalink and C. Vos for useful comments on the manuscript. Our work is supported by a Pioneer grant from NWO, The Netherlands.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reits, E., Neefjes, J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3, E145–E147 (2001). https://doi.org/10.1038/35078615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078615

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing