Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A profile of fertilization in mammals

Abstract

Fertilization is defined as the process of union of two gametes, eggs and sperm. When mammalian eggs and sperm come into contact in the female oviduct, a series of steps is set in motion that can lead to fertilization and ultimately to development of new individuals. The pathway begins with species-specific binding of sperm to eggs and ends a relatively short time later with fusion of a single sperm with each egg. Although this process has been investigated extensively, only recently have the molecular components of egg and sperm that participate in the mammalian fertilization pathway been identified. Some of these components may participate in gamete adhesion and exocytosis, whereas others may be involved in gamete fusion. Here we describe selected aspects of mammalian fertilization and address some of the latest experimental evidence that bears on this important area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of sperm to the egg zona pellucida.
Figure 2: Modular architecture of representative proteins containing ZP domains.
Figure 3: Events associated with the ZP3-mediated acrosome reaction in mammalian sperm.

Similar content being viewed by others

References

  1. Eisenbach, M. Mammalian sperm chemotaxis and its association with capacitation. Dev. Genet. 25, 87–94 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  2. Eisenbach, M. & Tur-Kaspa, I. Do human eggs attract spermatozoa? BioEssays 21, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Yanagimachi, R. in The Physiology of Reproduction Vol. 1, (eds Knobil, E. & Neill, J. D.) 189–317 (Raven, New York, 1994).

    Google Scholar 

  4. Snell, W. J. & White, J. M. The molecules of mammalian fertilization . Cell 85, 175–183 (1996).

    Article  Google Scholar 

  5. Wassarman, P. M. Mammalian fertilization: Molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96, 175– 183 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Gwatkin, R. B. L. Fertilization Mechanisms in Man and Mammals (Plenum, New York, 1977).

    Book  Google Scholar 

  7. Yanagimachi, R. Zona-free hamster eggs: their use is assessing fertilization capacitity and examining chromosomes of human spermatozoa. Gamete Res. 10, 178–232 (1984).

    Article  Google Scholar 

  8. Palumbi, S. R. & Metz, E. C. Strong reproductive isolation between closely related tropical sea urchins (genus Echinometra). Mol. Biol. Evol. 8, 227–239 (1991).

    CAS  PubMed  Google Scholar 

  9. Metz, E. C. & Palumbi, S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397– 406 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Bleil, J. D. & Wassarman, P. M. Mammalian sperm–egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20, 873 –882 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Wassarman, P. M. Profile of a mammalian sperm receptor. Development 108, 1–17 (1990).

    CAS  PubMed  Google Scholar 

  12. Florman, H. M. & Wassarman, P. M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity . Cell 41, 313–324 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kinloch, R. A., Sakai, Y. & Wassarman, P. M. Mapping the mouse ZP3 combining-site for sperm by exon swapping and site-directed mutagenesis. Proc. Natl Acad. Sci. USA 92, 263–267 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J., Litscher, E. S. & Wassarman, P. M. Inactivation of the mouse sperm receptor, mZP3, by site-directed mutagenesis of individual serine residues located at the combining-site for sperm. Proc. Natl Acad. Sci. USA 95, 6193–6197 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Litscher, E. S. et al. Oligosaccharide constructs with defined structures that inhibit binding of mouse sperm to unfertilized eggs in vitro. Biochemistry 34, 4662–4669 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  16. Tulsiani, D. R., Yoshida-Komiya, H. & Araki, Y. Mammalian fertilization: a carbohydrate-mediated event . Biol. Reprod. 57, 487– 494 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Johnston, D. S. et al. Murine sperm-zona binding, a fucosyl residue is required for a high affinity sperm-binding ligand. J. Biol. Chem. 273, 1888–1895 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Varki, A. et al. (eds) Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  19. Gabius, H-J. Biological information transfer beyond the genetic code: the sugar code. Natur Wissensch. 87, 108–121 (2000).

    Article  CAS  Google Scholar 

  20. Dennis, J. W., Granovsky, M. & Warren, C. E. Protein glycosylation in development and disease . BioEssays 21, 412–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Rankin, T. et al. Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding. Development 125, 2415–2424 (1998).

    CAS  PubMed  Google Scholar 

  22. Liu, C. et al. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc. Natl Acad. Sci. USA 93, 5431– 5436 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Rankin, T. et al. Mice homozygous of an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122, 2903–2910 (1996).

    CAS  PubMed  Google Scholar 

  24. Easton, R. L. et al. Structural analysis of murine zona pellucida glycans: evidence for the expression of core 2-type O-glycans and the Sda antigen . J. Biol. Chem. 275, 7731– 7742 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. McLeskey, S. B., Dowds, C., Carballada, R., White, R. R. & Saling, P. M. Molecules involved in mammalian sperm–egg interaction. Int. Rev. Cytol. 177, 57–113 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Primakoff, P. & Myles, D. G. The ADAM gene family: Surface proteins with adhesion and protease activity. Trends Genet. 16, 83–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Cho, C. et al. Fertilization defects in sperm from mice lacking fertilin β . Science 281, 1857–1859 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Shamsadin, R. et al. Male mice deficient for germ-cell cyritestin are infertile . Biol. Reprod. 61, 1445– 1451 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Florman, H. M., Arnoult, C., Kazam, L. G., Li, C., and O'Toole, C. M. B. An intimate biochemistry: egg-regulated acrosome reactions of mammalian sperm. Adv. Dev. Biochem. 5, 147–186 ( 1999).

    Google Scholar 

  30. Palumbi, S. R. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc. Natl Acad. Sci. USA 96, 12632–12637 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Abou-Haila, A. & Tulsiani, D. R. P. Mammalian sperm acrosome reaction: formation, contents, and function. Arch. Biochem. Biophys. 379, 173–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Bleil, J. D. & Wassarman, P. M. Sperm–egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol. 95, 317–324 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. O'Toole, C. M. B., Arnoult, C., Darszon, A., Steinhardt, R. A. & Florman, H. M. Ca2+ entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction . Mol. Biol. Cell 11, 1571– 1584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mortillo, S. & Wassarman, P. M. Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments . Development 113, 141– 151 (1991).

    CAS  PubMed  Google Scholar 

  35. Parekh, A. B. & Penner, R. Store depletion and calcium influx . Physiol. Rev. 77, 901– 930 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Darszon, A., Labarca, P., Nishigachi, T. & Espinosa, F. Ion channels in sperm physiology. Physiol. Rev. 79, 481–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Gong, X. H., Dubois, D. H., Miller, D. J. & Shur, B. D. Activation of a G protein complex by aggregation of β-galactosyltransferase on the surface of sperm. Science 269, 1718 –1721 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Walensky, L. D. & Snyder, S. H. Inositol 1,4,5-triphosphate receptors selectively localized to the acrosome of mammalian sperm. J. Cell Biol. 130, 857–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Iida, H., Yoshinaga, Y., Tanaka, S., Toshimori, K. & Mori, T. Identification of Rab3A GTPase as an acrosome-associated small GTP-binding protein in rat sperm. Dev. Biol. 211, 144–155 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  40. Yunes, R., Michaut, M., Tomes, C. & Mayorga, L. S. Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol. Reprod. 62, 1084–1089 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ramalho-Santos, J. et al. SNAREs in mammalian sperm: possible implications for fertilization . Dev. Biol. 223, 54–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bleil, J. D., Greve, J. M. & Wassarman, P. M. Identification of a secondary sperm receptor in the mouse egg zona pellucida: Role in maintenance of binding of acrosome-reacted sperm to eggs. Dev. Biol. 128, 376– 385 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Bedford, J. M. Mammalian fertilization misread? Sperm penetration of the eutherian zona pellucida is unlikely to be a lytic event. Biol. Reprod. 59, 1275–1287 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Eddy, E. M. and O'Brien, D. A. in The Physiology of Reproduction Vol. 1 (eds Knobil, E. & Neill, J. D.) 29– 77 (Raven, New York, 1994).

    Google Scholar 

  45. Adham, I. M., Nayernia, K. & Engel, W. Spermatozoa lacking acrosin protein show delayed fertilization . Mol. Reprod. Dev. 46, 370– 376 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Yamagata, K. et al. Acrosin accelerates the dispersal of sperm acrosomal proteins during acrosome reaction. J. Biol. Chem. 273, 10470–10474 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Baba, T., Azuma, S., Kashiwabra, S-I. & Toyoda, Y. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and affect fertilization. J. Biol. Chem. 269, 31845–31849 ( 1994).

    CAS  PubMed  Google Scholar 

  48. Yamagata, K., Honda, A., Kashiwabara, S-I. & Baba, T. Difference of acrosomal serine protease system between mouse and other rodents. Dev. Genet. 25, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Blobel, C. P. Roles of metalloprotease-disintegrins in cell-cell interactions, in neurogenesis, and in the cleavage of TNFα. Adv. Dev. Biochem. 5, 165–198 (1999).

    Article  CAS  Google Scholar 

  50. Bigler, D. et al. Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin β) and murine eggs. J. Biol. Chem. 275, 11576–11584 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  51. Almeida, E. A. C. et al. Mouse egg integrin α6β1 functions as a sperm receptor . Cell 81, 1095–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Evans, J. P., Kopf, G. S. & Schultz, R. M. Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse eggs: evidence for adhesive activity via an egg β1 integrin-mediated interaction. Dev. Biol. 187, 79–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Yuan, R., Primakoff, P. & Myles, D. G. A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J. Cell Biol. 137, 105–112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Houvila, A-P. J., Almeida, E. A. C. & White, J. M. ADAMs and cell fusion. Curr. Opin. Cell Biol. 8, 692–699 ( 1996).

    Article  Google Scholar 

  55. Bigler, D., Chen, M., Waters, S. & White, J. M. A model for sperm–egg binding and fusion based on ADAMs and integrins. Trends Cell Biol. 7, 220–225 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  56. Martin, I., Epand, R. M. & Ruysschaert, J. M. Structural properties of the putative fusion peptide of fertilin, a protein active in sperm-egg fusion, upon interaction with the lipid bilayer. Biochemistry 37, 17030– 17039 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Wolfe, C. A. et al. Membrane interactions of the putative fusion peptide (MFα P) from fertilin-α, the mouse sperm protein complex involved in fertilization . Mol. Membr. Biol. 16, 257– 263 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Muga, A., Neugebauer, W., Hirama, T. & Surewicz, W. K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 33, 4444–4448 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  59. Martin, I. & Ruysschaert, J. M. Comparison of lipid vesicle fusion induced by the putative fusion peptide of fertilin (a protein active in sperm-egg fusion) and the NH2-terminal domain of HIV2 gp41. FEBS Letts. 405, 351–355 (1997).

    Article  CAS  Google Scholar 

  60. Frayne, J. & Hall, L. Mammalian sperm–egg recognition: does fertilin β have a major role to play? BioEssays 21, 183–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Hemler, M. E. Integrin associated proteins. Curr. Opin. Cell Biol. 10, 578–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Porter, J. C. & Hogg, N. Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol. 8, 390–396 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, M. S. et al. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin α6β1: implications for murine fertilization. Proc. Natl Acad. Sci. USA 96, 11830–11835 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M. & Boucheix, C. Severely reduced female fertility in CD9-deficient mice. Science 287, 319– 321 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Miyado, K. et al. Requirement of CD9 on the egg plasma membrane for fertilization . Science 287, 321–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Kaji, K. et al. The gamete fusion process is defective in eggs of CD9-deficient mice. Nature Genet. 24, 279– 282 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Miller, B. J., Georges-Lebouesse, E., Primakoff, P. & Myles, D. G. Normal fertilization occurs with eggs lacking the integrin α6β1 and is CD9-dependent. J. Cell Biol. 149, 1289–1295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tachibana, I. & Hemler, M. E. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 abd CD81 in muscle cell fusion and myotube maintenance . J. Cell Biol. 146, 893– 904, (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cho, C., Ge, H., Branciforte, D., Primakoff, P. & Myles, D. G. Analysis of mouse fertilin in wild-type and fertilin β−/− sperm: evidence for C-terminal modification, α/β dimerization, and lack of essential role of fertilin α in sperm-egg fusion. Dev. Biol. 222, 289– 295 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Jury, J. A., Frayne, J. & Hall, L. The human fertilin α gene is non-functional: Implications for its proposed role in fertilization. Biochem. J. 321, 577–581 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jury, J. A., Frayne, J. & Hall, L. Sequence analysis of a variety of primate fertilin α genes: evidence for non-functional genes in the gorilla and man. Mol. Reprod. Dev. 51, 92–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Epifano, O., Liang, L., Familiari, M., Moos, M. C. & Dean, J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 121, 1947–1956 (1995).

    CAS  PubMed  Google Scholar 

  73. Chang, Y. S., Wang, S. C., Tsao, C. C. & Huang, F. L. Molecular cloning, structural analysis, and expression of carp ZP3 gene. Mol. Reprod. Dev. 44, 295–304 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  74. Chang, Y. S., Hsu, C. C., Wang, S. C., Tsao, C. C. & Huang, F. L. Molecular cloning, structural analysis, and expression of carp ZP2 gene. Mol. Reprod. Dev. 46, 258–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Del Giacco, L. et al. Identification and spatial distribution of the mRNA encoding the gp49 component of the gilthead sea bream, Sparus aurata, egg envelope . Mol. Reprod. Dev. 49, 58– 69 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Del Giacco, L., Diani, S. & Cotelli, F. Identification and spatial distribution of the mRNA encoding an egg envelope component of the Cyprinid zebrafish, Danio rerio , homologous to the mammalian ZP3(ZPC). Dev. Genes Evol. 210, 41–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Waclawek, M., Foisner, R., Nimpf, J. & Schneider, W. J. The chicken homologue of zona pellucida glycoprotein-3 is synthesized by granulosa cells . Biol. Reprod. 59, 1230– 1239 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Bausek, N., Waclawek, M., Schneider, W. J. & Wohlrab, F. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J. Biol. Chem. 275, 28866– 28872 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Ponting, C. P., Schultz, J., Milpetz, F. & Bork, P. SMART: identification and annotation of domains from signalling and extracellular protein sequences . Nucleic Acids Res. 27, 229– 232 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10, 1–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Rost, B., Fariselli, P. & Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 7, 1704– 1718 (1996).

    Article  Google Scholar 

  82. Hofmann, K. & Stoffel, W. TMbase — a database of membrane spanning proteins segments. Biol. Chem. Hoppe–Seyler 347, 166 (1993).

  83. Legan, P. K., Rau, A., Keen, J. N. & Richardson, G. P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem. 272 , 8791–8801 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Hoops, T. C. & Rindler, M. J. Isolation of the cDNA encoding glycoprotein-2 (GP-2), the major zymogen granule membrane protein. Homology to uromodulin/Tamm–Horsfall protein. J. Biol. Chem. 266, 4257–4263 (1991).

    CAS  PubMed  Google Scholar 

  85. Moren, A., Ichijo, H. & Miyazono, K. Molecular cloning and characterization of the human and porcine transforming growth factor-beta type III receptors. Biochem. Biophys. Res. Commun. 189, 356– 362 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Pennica, D. et al. Identification of human uromodulin as the Tamm–Horsfall urinary glycoprotein. Science 236, 83– 88 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, H., Bjerknes, M., Chen, H. CRP-ductin: a gene expressed in intestinal crypts and in pancreatic and hepatic ducts. Anat. Rec. 244, 327– 343 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Li, X. J. & Snyder, S. H. Molecular cloning of ebnerin, a von Ebner's gland protein associated with taste buds. J. Biol. Chem. 270, 17674–17679 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  89. Sebastiano, M., Lassandro, F. & Bazzicalupo, P. cut-1 a Caenorhabditis elegans gene coding for a dauer-specific noncollagenous component of the cuticle. Dev. Biol. 146, 519–530 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Wilkin, M. B. et al. Drosophila dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Curr. Biol. 10, 559–567 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our laboratory colleagues, past and present, for their valuable contributions to our research on mammalian fertilization. We are especially grateful to H. Qi and Z. Williams for discussion and assistance. We are currently supported in part by the NICHD (grant no. HD-35105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Wassarman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassarman, P., Jovine, L. & Litscher, E. A profile of fertilization in mammals. Nat Cell Biol 3, E59–E64 (2001). https://doi.org/10.1038/35055178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing