Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo

Abstract

Skeletal muscles adapt to changes in their workload by regulating fibre size by unknown mechanisms1,2. The roles of two signalling pathways implicated in muscle hypertrophy on the basis of findings in vitro3,4,5,6, Akt/mTOR (mammalian target of rapamycin) and calcineurin/NFAT (nuclear factor of activated T cells), were investigated in several models of skeletal muscle hypertrophy and atrophy in vivo. The Akt/mTOR pathway was upregulated during hypertrophy and downregulated during muscle atrophy. Furthermore, rapamycin, a selective blocker of mTOR7, blocked hypertrophy in all models tested, without causing atrophy in control muscles. In contrast, the calcineurin pathway was not activated during hypertrophy in vivo, and inhibitors of calcineurin, cyclosporin A and FK506 did not blunt hypertrophy. Finally, genetic activation of the Akt/mTOR pathway was sufficient to cause hypertrophy and prevent atrophy in vivo, whereas genetic blockade of this pathway blocked hypertrophy in vivo. We conclude that the activation of the Akt/mTOR pathway and its downstream targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal muscle fibre size, and that activation of the Akt/mTOR pathway can oppose muscle atrophy induced by disuse.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle hypertrophy is not blocked by CsA.
Figure 2: Muscle hypertrophy is associated with activation of the Akt/mTOR pathway and is blocked by rapamycin.
Figure 3: Recovery of muscle weight after HLS is blocked by rapamycin, but not cyclosporin.
Figure 4: Expression of activated Akt in normal and denervated muscle fibres induces hypertrophy.

References

  1. Carson, J. A. Exercise Sport Science Rev. 25, 301–320 (1997).

    Article  CAS  Google Scholar 

  2. Baar, K., Blough, E., Dineen, B. & Esser, K. Exercise Sport Science Rev. 27, 333–379 (1999).

    Article  CAS  Google Scholar 

  3. Molkentin, J. D. et al. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Semarian, C. et al. Nature 400, 576–581 (1999).

    Article  Google Scholar 

  5. Musaro, A. et al. Nature 400, 581–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Rommel, C. et al. Nature Cell Biol. 3, 1009–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Schmeizie, T. & Hall, M. N. Cell 103, 253–262 (2000).

    Article  Google Scholar 

  8. Adams, G. R. & Haddad, G. R. J. Appl. Physiol. 81, 2509–2516 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Roy, R. R. et al. J. Appl. Physiol. 83, 280–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Naya, F. J. et al. J. Biol. Chem. 275, 4545–4548 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Murgia, M. et al. Nature Cell Biol. 2, 142–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Terada, N. et al. Proc. Natl Acad. Sci. USA 91, 11477–11481 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brunn, G. J. et al. Science 277, 99–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Rhoads, R. E. J. Biol. Chem. 274, 30337–30340 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, T.-A. et al. Science 266, 653–656 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, T.-A. & Lawrence, J. C. Jr J. Biol. Chem. 271, 30199–30204 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Jefferson, L. S., Fabian, J. R. & Kimball, S. R. Int. J. Biochem. Cell Biol. 31, 191–200, (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Welch, G. I., et al. FEBS Lett. 410, 418–422 (1997).

    Article  Google Scholar 

  19. Tung, C. O., Rittenhouse, S. E. & Tsichlis, P. N. Annu. Rev. Biochem. 68, 965–1014 (1999).

    Article  Google Scholar 

  20. Shah, O.J, Anthony, J. C., Kimball, S. R. & Jefferson, L. S. Am. J. Physiol. Endocrinol. Metab. 279, E715–E729 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Thomason, D. B., Herrick, R. E., Surdyka, D. & Baldwin, K. M. J. Appl. Physiol. 63, 130–137 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Eves, E. M. et al. Mol. Cell. Biol. 18, 2143–2152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brennan, K. J. & Hardeman, E. C. J. Biol. Chem. 268, 719–725 (1993).

    CAS  PubMed  Google Scholar 

  24. Dunn, S. E., Burns, J. L. & Michel, R. N. J. Biol. Chem. 274, 21908–21912 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Dunn, S. E., Chin, E. R. & Michel, R. N. J. Cell Biol. 151, 663–672 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musaro, A. et al. Nature Genet. 27, 195–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Roy, R. R., Monke, S. R., Allen, D. L. & Edgerton, V. R. J. Appl. Physiol. 87, 634–642 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenblatt, J. D., Yong, D. & Parry, D. J. Muscle Nerve 17, 608–613 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Wong, T. S. & Booth F. W. J. Appl. Physiol. 69, 1718–1724 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Lowe, D. A. & Always, S. E. Cell Tiss. Res. 296, 531–539 (1999).

    Article  CAS  Google Scholar 

  31. Baar, K. & Esser, K. Am. J. Physiol. Cell 45, C120–C127 (1999).

    Article  Google Scholar 

  32. Montagne, J. et al. Science 285, 2126–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Weinkove, D. & Leever, S. J. Curr. Opin. Genet. Dev. 10, 75–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shima, H. et al. EMBO J. 17, 6649–6659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shioi, T. et al. EMBO J. 19, 2537–2548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rommel, C. et al. Science 286, 1738–1741 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Azpiazu, I, Saltiel, A. R., DePaoli-Roach, A. A. & Lawrence, J. C. Jr J. Biol. Chem. 271, 5033–5039 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. S. Schleifer and P. R. Vagelos and the rest of the Regeneron community for their support, particularly E. Burrows for graphics work and C. Rommel for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sue C. Bodine or George D. Yancopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodine, S., Stitt, T., Gonzalez, M. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 1014–1019 (2001). https://doi.org/10.1038/ncb1101-1014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing