Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional localization of single active ion channels on the surface of a living cell

Abstract

The spatial distribution of ion channels in the cell plasma membrane has an important role in governing regional specialization, providing a precise and localized control over cell function. We report here a novel technique based on scanning ion conductance microscopy that allows, for the first time, mapping of single active ion channels in intact cell plasma membranes. We have mapped the distribution of ATP-regulated K+ channels (KATP channels) in cardiac myocytes. The channels are organized in small groups and anchored in the Z-grooves of the sarcolemma. The distinct pattern of distribution of these channels may have important functional implications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional localization of single ion channels in intact cell membranes.
Figure 2: Simultaneous topographic and ion-channel current recording.
Figure 3: Functional imaging of the distribution of single KATP channels in the cardiomyocyte sarcolemma.

Similar content being viewed by others

References

  1. Beam, K. G., Caldwell, J. H. & Campbell, D. T. Na channels in skeletal muscle concentrated near the neuromuscular junction. Nature 313, 588–590 (1985).

    Article  CAS  Google Scholar 

  2. Angelides, K. J. Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 321, 63–66 (1986).

    Article  CAS  Google Scholar 

  3. Tousson, A., Alley, C. D., Sorscher, E. J., Brinkley, B. R. & Benos, D. J. Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J. Cell Sci. 93, 349–362 (1989).

    CAS  Google Scholar 

  4. Smith, P. R., Bradford, A. L., Schneider, S., Benos, D. J. & Geibel, J. P. Localization of amiloride-sensitive sodium channels in A6 cells by atomic force microscopy. Am. J. Physiol. 272, C1295–C1298 (1997).

    Article  CAS  Google Scholar 

  5. Abrami, L. et al. Localization of the FA-CHIP water channel in frog urinary bladder [published erratum appears in Eur .J. Cell Biol. 1998 Jan;75(1):77]. Eur. J. Cell Biol. 73, 215–221 (1997).

    Article  CAS  Google Scholar 

  6. Alonso, G. & Widmer, H. Clustering of KV4.2 potassium channels in postsynaptic membrane of rat supraoptic neurons: an ultrastructural study. Neuroscience 77, 617–621 (1997).

    Article  CAS  Google Scholar 

  7. Barbosa, C. T., Alkondon, M., Aracava, Y., Maelicke, A. & Albuquerque, E. X. Ligand-gated ion channels in acutely dissociated rat hippocampal neurons with long dendrites. Neurosci. Lett. 210, 177–180 (1996).

    Article  CAS  Google Scholar 

  8. Cohen, M. W., Jones, O. T. & Angelides, K. J. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J. Neurosci. 11, 1032–1039 (1991).

    Article  CAS  Google Scholar 

  9. Denk, W. Two-photon scanning photochemical microscopy: mapping ligand- gated ion channel distributions. Proc. Natl Acad. Sci. USA 91, 6629–6633 (1994).

    Article  CAS  Google Scholar 

  10. Frosch, M. P. & Dichter, M. A. Non-uniform distribution of GABA activated chloride channels in cultured cortical neurons. Neurosci. Lett. 138, 59–62 (1992).

    Article  CAS  Google Scholar 

  11. Karpen, J. W., Loney, D. A. & Baylor, D. A. Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. J. Physiol (Lond) 448, 257–274 (1992).

    Article  CAS  Google Scholar 

  12. Grabner, M., Dirksen, R. T. & Beam, K. G. Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes. Proc. Natl Acad. Sci. USA 95, 1903–1908 (1998).

    Article  CAS  Google Scholar 

  13. Joe, E. H. & Angelides, K. Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact. Nature 356, 333–335 (1992).

    Article  CAS  Google Scholar 

  14. Marrion, N. V. & Tavalin, S. J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905 (1998).

    Article  CAS  Google Scholar 

  15. Almers, W., Stanfield, P. R. & Stühmer, W. Lateral distribution of sodium and potassium channels in frog skeletal muscle: measurements with a patch-clamp technique. J. Physiol (Lond) 336, 261–284 (1983).

    Article  CAS  Google Scholar 

  16. Shrager, P. The distribution of sodium and potassium channels in single demyelinated axons of the frog. J. Physiol (Lond) 392, 587–602 (1987).

    Article  CAS  Google Scholar 

  17. Ruff, R. L. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol. Scand. 156, 159–168 (1996).

    Article  CAS  Google Scholar 

  18. Stockbridge, N. & Ross, W. N. Localized Ca2+ and calcium-activated potassium conductances in terminals of a barnacle photoreceptor. Nature 309, 266–268 (1984).

    Article  CAS  Google Scholar 

  19. Anson, B. D. & Roberts, W. M. A novel voltage clamp technique for mapping ionic currents from cultured skeletal myotubes. Biophys. J. 74, 2963–2972 (1998).

    Article  CAS  Google Scholar 

  20. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp technique for high-resolution current recording from cells and cell-freemembrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  21. Hansma, P. K., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).

    Article  CAS  Google Scholar 

  22. Bard, A. J. et al. Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254, 68–74 (1991).

    Article  CAS  Google Scholar 

  23. Korchev, Y. E. et al. Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188, 17–23 (1997).

    Article  CAS  Google Scholar 

  24. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658 (1997).

    Article  CAS  Google Scholar 

  25. Korchev, Y. E. et al. Cell volume measurement using scanning ion conductance microscopy. Biophys. J. 78, 451–457 (2000).

    Article  CAS  Google Scholar 

  26. Noma, A. ATP-regulated K+ channels in cardiac muscle. Nature 305, 147–148 (1983).

    Article  CAS  Google Scholar 

  27. Nichols, C. G. & Lederer, W. J. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am. J. Physiol. 261, H1675–H1686 (1991).

    CAS  Google Scholar 

  28. Yokoshiki, H., Katsube, Y., Sunugawa, M., Seki, T. & Sperelakis, N. Disruption of actin cytoskeleton attenuates sulfonylurea inhibition of cardiac ATP-sensitive K+ channels. Pflugers Arch. 434, 203–205 (1997).

    Article  CAS  Google Scholar 

  29. Cheng, H., Cannell, M. B. & Lederer, W. J. Propagation of excitation-contraction coupling into ventricular myocytes. Pflugers Arch. 428, 415–417 (1994).

    Article  CAS  Google Scholar 

  30. Lederer, W. J., Nichols, C. G. & Smith, G. L. The mechanism of early contractile failure of isolated rat ventricular myocytes subjected to complete metabolic inhibition. J. Physiol. (Lond) 413, 329–349 (1989).

    Article  CAS  Google Scholar 

  31. Harding, S. E. et al. Contractile responses of isolated rat and rabbit myocytes to isoproterenol and calcium. J. Mol. Cell. Cardiol. 20, 635–647 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Harding (National Heart and Lung Institute, Imperial College) for providing cardiac cells. Our work is supported by the Paul Instrument Fund, the British Heart Foundation, the Office of Naval Research and the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Korchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchev, Y., Negulyaev, Y., Edwards, C. et al. Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol 2, 616–619 (2000). https://doi.org/10.1038/35023563

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing