Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans

Abstract

Similar to mammalian excitotoxic cell death, necrotic-like cell death (NCD) in Caenorhabditis elegans can be initiated by hyperactive ion channels. Here we investigate the requirements for genes that execute and regulate programmed cell death (PCD) in necrotic-like neuronal death caused by a toxic MEC-4 channel. Neither the kinetics of necrosis onset nor the total number of necrotic corpses generated is altered by any C. elegans mutation known to block PCD, which provides genetic evidence that the activating mechanisms for NCD and apoptotic cell death are distinct. In contrast, all previously reported ced genes required for phagocytotic removal of apoptotic corpses, as well as ced-12, a new engulfment gene we have identified, are required for efficient elimination of corpses generated by distinct necrosis-inducing stimuli. Our results show that a common set of genes acts to eliminate cell corpses irrespective of the mode of cell death, and provide the first identification of the C. elegans genes that are required for orderly removal of necrotic cells. As phagocytotic mechanisms seem to be conserved from nematodes to humans, our findings indicate that injured necrotic cells in higher organisms might also be eliminated before lysis through a controlled process of corpse removal, a hypothesis that has significant therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ced-9, egl-1, ced-3 and ced-4 do not affect mec-4(u231)-induced cell death.
Figure 2: Engulfment genes promote the removal of necrotic-like cell corpses.
Figure 3: ced-12 promotes the removal of both necrotic and apoptotic cell corpses.
Figure 4: Distinct cell-death processes generate corpses that are removed by a common engulfment mechanism.

Similar content being viewed by others

References

  1. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hengartner, M. O. & Horvitz, H. R. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Vaux, D. L, Weissman, I. L., & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519 –529 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Xue, D., Shaham S. & Horvitz, H. R. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073–1083 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Shaham, S. & Horvitz, H. R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  10. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405– 413 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79–94 ( 1993).

    Google Scholar 

  13. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Hong, K. & Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367, 470– 473 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Treinin, M. & Chalfie, M. A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14, 871–877 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  16. Treinin, M., Gillo, B. Liebman, L. & Chalfie, M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl Acad. Sci. USA 95, 15492–15495 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 ( 1981).

    Article  CAS  PubMed  Google Scholar 

  18. Hall, D. H., et al., Neuropathology of degenerative cell death in Caenorhabditis elegans. J. Neurosci. 17, 1033– 1045 (1992).

    Article  Google Scholar 

  19. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  20. Dunn, W. A. Autophagy and related mechanisms of lysosome-mediated protein degradation . Trends Cell Biol. 4, 139– 143 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Kane, D. J., Ord, T., Anton, R. & Bredesen, D. E. Expression of bcl-2 inhibits necrotic neural cell death. J. Neurosci. Res. 40, 269–275 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  22. Vaux, D. L., Whitney, D. & Weismann, I. L. Activation of physiological cell death mechanisms by a necrosis-causing agent. Microsc. Res. Tech. 34 , 259–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu, S. et al. Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12, 2045–2050 (1996).

    CAS  PubMed  Google Scholar 

  24. Okuno, S. I. et al. Bcl-2 prevents caspase-independent cell death. J. Biol. Chem. 273, 34272–34277 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities . Genes Dev. 10, 578–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shaham, S., Reddien, P.W., Davies, B., & Horvitz, H.R. Mutational analysis of the C. elegans cell death gene ced-3. Genetics 153, 1655–1671 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson, A. M. G. & Thomson, J. N. Morphology of programmed cell death in the ventral cord of Caenorhabditis elegans . J. Embryol. Exp. Morphol. 67, 89– 100 (1982).

    Google Scholar 

  28. Moynault, A., Luciani, M. F. & Chimini, G. ABC1, the mammalian homologue of the engulfment gene ced-7, is required during phagocytosis of both necrotic and apoptotic cells. Biochem. Soc. Trans. 26, 629– 635 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans . Nature 345, 410–416 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Korswagen, H. C., Park, J-H., Ohshima, Y., & Plasterk, R. H. A. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 11, 1493 –1503 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Berger, A. J., Hart, A. C. & Kaplan, J. M. G-α(s)-induced neurodegeneration in Caenorhabditis elegans. J. Neurosci. 18, 2871–2888 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, Y. C. & Horvitz H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951– 960 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol 2, 131– 136 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180 . Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vercammen, D. et al., Dual signaling of the FAS receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 18, 919–930 (1998).

    Article  Google Scholar 

  36. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chautan, M., Chazal, G., Cecconi, F., Gruss, P. & Goldstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, S. B., Clarke, M. C. H., Magowan, L., Sanderson, H. & Savill, J. Constitutive death of platelets leading to scavanger-mediated phagocytosis. J. Biol. Chem. 275, 5987–5996 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  39. Savill, J., Fadok, V., Henson, P. & Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14, 131–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Hart, S. P., Haslett, C. & Dransfield, I. Recognition of apoptotic cells by phagocytes. Experientia 52, 950–956 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Fadok, V. A., Bratton, D. Frasch, S. C., Warner, M. L. & Henson, P. H., The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death. Diff. 5, 551–562 ( 1998).

    Article  CAS  Google Scholar 

  42. Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans . Cell 93, 961–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64– 119 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sulston, J. E. & Horvitz, H. R. Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  46. Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans . Dev. Biol. 70, 396– 417 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Driscoll, M. Methods for the study of cell death in the nematode Caenorhabditis elegans . Methods Cell Biol. 46, 323– 353 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Avery, L. & Horvitz, H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51, 1071– 1078 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 ( 1992).

    CAS  PubMed  Google Scholar 

  50. Garcia-Anoveros, J., Ma, C. & Chalfie, M. Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr. Biol. 5, 441–448 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Francis and T. Schedl for providing the oz167 allele. Some strains were provided by The Caenorhabditis Genetics Center, which is supported by the National Institute of Health National Center for Research Resources, M. Chalfie, D. Xue, R. Plasterk and H. R. Horvitz. We thank G. Patterson and members of the Driscoll laboratory for discussion and comments on the manuscript. This work was supported by NIH grants R01NS34435 (to M.D.) and GM-52540 (to M.O.H.); S.C. was supported in part by grant no. 5T32GM08360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S., Gumienny, T., Hengartner, M. et al. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2, 931–937 (2000). https://doi.org/10.1038/35046585

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing