Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organelle biogenesis in the endoplasmic reticulum

Abstract

Understanding organelle biogenesis is a central focus of cell biology. Whereas some are generated from existing organelles, others can be generated de novo. Most de novo organelle biogenesis occurs in the endoplasmic reticulum (ER). Here, we review the role of the ER in the generation of peroxisomes, lipid droplets, and omegasomes, which are platforms for autophagosome production, and discuss how ER subdomains with specific protein and lipid composition form and promote organelle biogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of de novo peroxisome biogenesis in yeast.
Figure 2: Lipid droplet biogenesis in the ER.
Figure 3: Schematic illustration of the localization of autophagy proteins during autophagosome formation.

Similar content being viewed by others

References

  1. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goyal, U. & Blackstone, C. Untangling the web: mechanisms underlying ER network formation. Biochim. Biophys. Acta 1833, 2492–2498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50 (Suppl.), S311–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Orci, L. et al. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl Acad. Sci. USA 88, 8611–8615 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 867 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Stephens, D. J. De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites. EMBO Rep. 4, 210–217 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barlowe, C. K. & Miller, E. A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193, 383–410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. D'Arcangelo, J. G., Stahmer, K. R. & Miller, E. A. Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim. Biophys. Acta 1833, 2464–2472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Budnik, A. & Stephens, D. J. ER exit sites—localization and control of COPII vesicle formation. FEBS Lett. 583, 3796–3803 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, E. A. & Barlowe, C. Regulation of coat assembly—sorting things out at the ER. Curr. Opin. Cell Biol. 22, 447–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gillon, A. D., Latham, C. F. & Miller, E. A. Vesicle-mediated ER export of proteins and lipids. Biochim. Biophys. Acta 1821, 1040–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borgese, N. Getting membrane proteins on and off the shuttle bus between the endoplasmic reticulum and the Golgi complex. J. Cell Sci. 129, 1537–1545 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zanetti, G., Pahuja, K. B., Studer, S., Shim, S. & Schekman, R. COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Jensen, D. & Schekman, R. COPII-mediated vesicle formation at a glance. J. Cell Sci. 124, 1–4 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Navarro, N. & Miller, E. Protein sorting at the ER–Golgi interface. J. Cell Biol. 215, 769–778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glick, B. S. Integrated self-organization of transitional ER and early Golgi compartments. BioEssays 36, 129–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Farhan, H., Weiss, M., Tani, K., Kaufman, R. J. & Hauri, H. P. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J. 27, 2043–2054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanton, S. L., Chatre, L., Renna, L., Matheson, L. A. & Brandizzi, F. De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiol. 143, 1640–1650 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bevis, B. J., Hammond, A. T., Reinke, C. A. & Glick, B. S. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat. Cell Biol. 4, 750–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castillon, G. A., Watanabe, R., Taylor, M., Schwabe, T. M. & Riezman, H. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10, 186–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Iwasaki, H., Yorimitsu, T. & Sato, K. Distribution of Sec24 isoforms to each ER exit site is dynamically regulated in Saccharomyces cerevisiae. FEBS Lett. 589, 1234–1239 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Gimeno, R. E., Espenshade, P. & Kaiser, C. A. COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol. Biol. Cell 7, 1815–1823 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Connerly, P. L. et al. Sec16 is a determinant of transitional ER organization. Curr. Biol. 15, 1439–1447 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ivan, V. et al. Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif. Mol. Biol. Cell 19, 4352–4365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhattacharyya, D. & Glick, B. S. Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol. Biol. Cell 18, 839–849 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blumental-Perry, A. et al. Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell 11, 671–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, J. J. & Aitchison, J. D. Peroxisomes take shape. Nat. Rev. Mol. Cell Biol. 14, 803–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Veldhoven, P. P. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 51, 2863–2895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steinberg, S. J. et al. Peroxisome biogenesis disorders. Biochim. Biophys. Acta 1763, 1733–1748 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Novikoff, P. M. & Novikoff, A. B. Peroxisomes in absorptive cells of mammalian small intestine. J. Cell Biol. 53, 532–560 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldman, B. M. & Blobel, G. Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc. Natl Acad. Sci. USA 75, 5066–5070 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Lazarow, P. B. & Fujiki, Y. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Hettema, E. H., Girzalsky, W., van Den Berg, M., Erdmann, R. & Distel, B. Saccharomyces cerevisiae pex3p and pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J. 19, 223–233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, P. K., Mullen, R. T., Schumann, U. & Lippincott-Schwartz, J. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 173, 521–532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P. & Tabak, H. F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Motley, A. M. & Hettema, E. H. Yeast peroxisomes multiply by growth and division. J. Cell Biol. 178, 399–410 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan, W., Veenhuis, M. & van der Klei, I. J. The birth of yeast peroxisomes. Biochim. Biophys. Acta 1863, 902–910 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Sugiura, A., Mattie, S., Prudent, J. & McBride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Raychaudhuri, S. & Prinz, W. A. Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 105, 15785–15790 (2008).

    Article  PubMed  Google Scholar 

  45. Costello, J. L. et al. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J. Cell Biol. 216, 331–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hua, R. et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J. Cell Biol. 216, 367–377 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. David, C. et al. A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis. Mol. Cell. Proteomics 12, 2408–2425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dimitrov, L., Lam, S. K. & Schekman, R. The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb. Perspect. Biol. 5, a013243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agrawal, G. & Subramani, S. Emerging role of the endoplasmic reticulum in peroxisome biogenesis. Front. Physiol. 4, 286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. South, S. T., Sacksteder, K. A., Li, X., Liu, Y. & Gould, S. J. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J. Cell Biol. 149, 1345–1360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voorn-Brouwer, T., Kragt, A., Tabak, H. F. & Distel, B. Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. J. Cell Sci. 114, 2199–2204 (2001).

    CAS  PubMed  Google Scholar 

  52. Agrawal, G., Joshi, S. & Subramani, S. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 108, 9113–9118 (2011).

    Article  PubMed  Google Scholar 

  53. Lam, S. K., Yoda, N. & Schekman, R. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 108, E51–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Titorenko, V. I., Chan, H. & Rachubinski, R. A. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. 148, 29–44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Zand, A., Gent, J., Braakman, I. & Tabak, H. F. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149, 397–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Rayapuram, N. & Subramani, S. The importomer—a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim. Biophys. Acta 1763, 1613–1619 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Agrawal, G., Fassas, S. N., Xia, Z. J. & Subramani, S. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J. Cell Biol. 212, 335–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Motley, A. M., Galvin, P. C., Ekal, L., Nuttall, J. M. & Hettema, E. H. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. J. Cell Biol. 211, 1041–1056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knoops, K., de Boer, R., Kram, A. & van der Klei, I. J. Yeast pex1 cells contain peroxisomal ghosts that import matrix proteins upon reintroduction of Pex1. J. Cell Biol. 211, 955–962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bellu, A. R., Salomons, F. A., Kiel, J. A., Veenhuis, M. & Van Der Klei, I. J. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 277, 42875–42880 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Williams, C. & van der Klei, I. J. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem. Biophys. Res. Commun. 438, 395–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Knoops, K. et al. Preperoxisomal vesicles can form in the absence of Pex3. J. Cell Biol. 204, 659–668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joshi, A. S. et al. A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis. J. Cell Biol. 215, 515–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vizeacoumar, F. J., Torres-Guzman, J. C., Bouard, D., Aitchison, J. D. & Rachubinski, R. A. Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 665–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vizeacoumar, F. J., Torres-Guzman, J. C., Tam, Y. Y., Aitchison, J. D. & Rachubinski, R. A. YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. J. Cell Biol. 161, 321–332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gross, D. A. & Silver, D. L. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Mol. Biol. 49, 304–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Wilfling, F., Haas, J. T., Walther, T. C. & Farese, R. V. Jr . Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Welte, M. A. Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hashemi, H. F. & Goodman, J. M. The life cycle of lipid droplets. Curr. Opin. Cell Biol. 33, 119–124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pol, A., Gross, S. P. & Parton, R. G. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thiam, A. R. & Beller, M. The why, when and how of lipid droplet diversity. J. Cell Sci. 130, 315–324 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Unger, R. H. & Scherer, P. E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 21, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hartman, I. Z. et al. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J. Biol. Chem. 285, 19288–19298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Olzmann, J. A., Richter, C. M. & Kopito, R. R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl Acad. Sci. USA 110, 1345–1350 (2013).

    Article  PubMed  Google Scholar 

  76. Fei, W., Wang, H., Fu, X., Bielby, C. & Yang, H. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 424, 61–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Khandelia, H., Duelund, L., Pakkanen, K. I. & Ipsen, J. H. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS ONE 5, e12811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choudhary, V., Ojha, N., Golden, A. & Prinz, W. A. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211, 261–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thiam, A. R., Farese, R. V. Jr & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thiam, A. R. & Foret, L. The physics of lipid droplet nucleation, growth and budding. Biochim. Biophys. Acta 1861, 715–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Magre, J. et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28, 365–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Fei, W. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180, 473–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Szymanski, K. M. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. USA 104, 20890–20895 (2007).

    Article  PubMed  Google Scholar 

  84. Boutet, E. et al. Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie 91, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Grippa, A. et al. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J. Cell Biol. 211, 829–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, C. W., Miao, Y. H. & Chang, Y. S. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J. Cell Sci. 127, 1214–1228 (2014).

    Article  PubMed  Google Scholar 

  87. Cartwright, B. R. et al. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26, 726–739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tian, Y. et al. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet. 7, e1001364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wolinski, H. et al. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim. Biophys. Acta 1851, 1450–1464 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Sim, M. F. et al. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bi, J. et al. Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metab. 19, 861–871 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fei, W. et al. Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. J. Lipid Res. 52, 2136–2147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fei, W. et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet. 7, e1002201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kadereit, B. et al. Evolutionarily conserved gene family important for fat storage. Proc. Natl Acad. Sci. USA 105, 94–99 (2008).

    Article  PubMed  Google Scholar 

  96. Goh, V. J. et al. Postnatal deletion of fat storage-inducing transmembrane protein 2 (FIT2/FITM2) causes lethal enteropathy. J. Biol. Chem. 290, 25686–25699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miranda, D. A. et al. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J. Biol. Chem. 289, 9560–9572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jacquier, N. et al. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424–2437 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3, e01607 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kassan, A. et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jacquier, N., Mishra, S., Choudhary, V. & Schneiter, R. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126, 5198–5209 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Shockey, J. M. et al. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18, 2294–2313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Adeyo, O. et al. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192, 1043–1055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gross, D. A., Zhan, C. & Silver, D. L. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl Acad. Sci. USA 108, 19581–19586 (2011).

    Article  PubMed  Google Scholar 

  106. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Lu, Q., Wu, F. & Zhang, H. Aggrephagy: lessons from C. elegans. Biochem. J. 452, 381–390 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    Article  PubMed  Google Scholar 

  111. Uemura, T. et al. A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol. Cell. Biol. 34, 1695–1706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mochizuki, Y. et al. Phosphatidylinositol 3-phosphatase myotubularin-related protein 6 (MTMR6) is regulated by small GTPase Rab1B in the early secretory and autophagic pathways. J. Biol. Chem. 288, 1009–1021 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Matsunaga, K. et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190, 511–521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koyama-Honda, I., Itakura, E., Fujiwara, T. K. & Mizushima, N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9, 1491–1499 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Karanasios, E. et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126, 5224–5238 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2, e00947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ishihara, N. et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12, 3690–3702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24, 2918–2931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tan, D. et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl Acad. Sci. USA 110, 19432–19437 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    Article  PubMed  Google Scholar 

  124. Kraft, C. et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31, 3691–3703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakatogawa, H. et al. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503–28507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nishimura, T. et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 14, 284–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Papinski, D. et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471–483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Raiborg, C., Wenzel, E. M. & Stenmark, H. ER-endosome contact sites: molecular compositions and functions. EMBO J. 34, 1848–1858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lippincott-Schwartz, J. & Phair, R. D. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39, 559–578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guo, Y., Sirkis, D. W. & Schekman, R. Protein sorting at the trans-Golgi network. Annu. Rev. Cell Dev. Biol. 30, 169–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Zanghellini, J., Wodlei, F. & von Grunberg, H. H. Phospholipid demixing and the birth of a lipid droplet. J. Theor. Biol. 264, 952–961 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Ben M'barek, K. et al. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41, 591–604.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Shai, N., Schuldiner, M. & Zalckvar, E. No peroxisome is an island—Peroxisome contact sites. Biochim. Biophys. Acta 1863, 1061–1069 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Barbosa, A. D. & Siniossoglou, S. Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim. Biophys. Acta (in the press).

  135. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. H.Z. was supported by grants from the National Natural Science Foundation of China (NSFC) (31561143001, 31630048, 31421002), the National Basic Research Program of China (2013CB910100), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (grant XDB19000000) and Key Research Program of Frontier Sciences, CAS (grant QYZDY-SSW-SMC006), and in part by an International Early Career Scientist grant from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Prinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Zhang, H. & Prinz, W. Organelle biogenesis in the endoplasmic reticulum. Nat Cell Biol 19, 876–882 (2017). https://doi.org/10.1038/ncb3579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing