Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress

Abstract

The cytoplasmic polyadenylation element-binding (CPEB) proteins regulate pre-mRNA processing and translation of CPE-containing mRNAs in early embryonic development and synaptic activity. However, specific functions in adult organisms are poorly understood. Here we show that CPEB4 is required for adaptation to high-fat-diet- and ageing-induced endoplasmic reticulum (ER) stress, and subsequent hepatosteatosis. Stress-activated liver CPEB4 expression is dual-mode regulated. First, Cpeb4 mRNA transcription is controlled by the circadian clock, and then its translation is regulated by the unfolded protein response (UPR) through upstream open reading frames within the 5′UTR. Thus, the CPEB4 protein is synthesized only following ER stress but the induction amplitude is circadian. In turn, CPEB4 activates a second wave of UPR translation required to maintain ER and mitochondrial homeostasis. Our results suggest that combined transcriptional and translational Cpeb4 regulation generates a ‘circadian mediator’, which coordinates hepatic UPR activity with periods of high ER-protein-folding demand. Accordingly, CPEB4 deficiency results in non-alcoholic fatty liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cpeb4 gene-targeted mice develop liver steatosis.
Figure 2: Cpeb4 deletion causes mitochondrial dysfunction and defective lipid metabolism in hepatocytes.
Figure 3: CPEB4 regulates the expression of ER-related proteins.
Figure 4: CPEB4 depletion leads to defective adaptation to chronic ER stress.
Figure 5: CPEB4 synthesis and translation of CPE-regulated mRNAs are upregulated by UPR.
Figure 6: The uORFs and CPEs determine mRNA activation kinetics, which is influenced by the circadian clock.
Figure 7: Cpeb4 mRNA levels are regulated by the molecular circadian clock.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, S. & Kaufman, R. J. How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? Curr. Opin. Lipidol. 25, 125–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Bertolotti, A., Zhang, Y., Hendershot, L., Harding, H. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress-eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cretenet, G., Le Clech, M. & Gachon, F. Circadian clock-coordinated 12 h period rhythmic activation of the IRE1α pathway controls lipid metabolism in mouse liver. Cell Metab. 11, 47–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Miranda, G. & Mendez, R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 11, 460–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ivshina, M., Lasko, P. & Richter, J. D. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 393–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Afroz, T. et al. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 28, 1498–1514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, X. P. & Cooper, N. G. Comparative in silico analyses of cpeb1-4 with functional predictions. Bioinformatics Biol. Insights 4, 61–83 (2010).

    Article  CAS  Google Scholar 

  13. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Pavlopoulos, E. et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147, 1369–1383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drisaldi, B. et al. SUMOylation is an inhibitory constraint that regulates the prion-like aggregation and activity of CPEB3. Cell Rep. 11, 1694–1702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Igea, A. & Mendez, R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 29, 2182–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guillén-Boixet, J. B. V., Salvatella, X. & Méndez, R. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. eLife 5, e19298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hake, L. E., Mendez, R. & Richter, J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell. Biol. 18, 685–693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell 1, 201–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, W., Yuan, B. & Lodish, H. F. Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation. Dev. Cell 30, 660–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burns, D. M. & Richter, J. D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ortiz-Zapater, E. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat. Med. 18, 83–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Bava, F. A. et al. CPEB1 coordinates alternative 3’-UTR formation with translational regulation. Nature 495, 121–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Calderone, V. et al. Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of VEGF and angiogenesis in chronic liver disease. Gastroenterology 150, 982–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Pras, E. et al. Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut http://gut.bmj.com/content/early/2016/03/16/gutjnl-2015-311157 (2016).

  26. Alexandrov, I. M. et al. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance. PLoS Genet. 8, e1002457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pique, M., Lopez, J. M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Belloc, E. & Mendez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724–2736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Browning, J. D. & Horton, J. D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114, 147–152 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Deng, J. et al. Lipolysis response to endoplasmic reticulum stress in adipose cells. J. Biol. Chem. 287, 6240–6249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kan, M. C. et al. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol. Cell. Biol. 30, 5658–5671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weill, L., Belloc, E., Bava, F. A. & Mendez, R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19, 577–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Rutkowski, D. T. et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell 15, 829–840 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raabe, M. et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest. 103, 1287–1298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rao, M. S. & Reddy, J. K. Peroxisomal β-oxidation and steatohepatitis. Semin. Liver Dis. 21, 43–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Ota, T., Gayet, C. & Ginsberg, H. N. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118, 316–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Volmer, R. & Ron, D. Lipid-dependent regulation of the unfolded protein response. Curr. Opin. Cell Biol. 33, 67–73 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sagara, Y. & Inesi, G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J. Biol. Chem. 266, 13503–13506 (1991).

    CAS  PubMed  Google Scholar 

  42. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, X. et al. Quantitative profiling of initiating ribosomes in vivo. Nat. Methods 12, 147–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Reid, D. W., Chen, Q., Tay, A. S., Shenolikar, S. & Nicchitta, C. V. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158, 1362–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giangarra, V., Igea, A., Castellazzi, C. L., Bava, F. A. & Mendez, R. Global analysis of CPEBs reveals sequential and non-redundant functions in mitotic cell cycle. PLoS ONE 10, e0138794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wethmar, K. et al. Comprehensive translational control of tyrosine kinase expression by upstream open reading frames. Oncogene 35, 1736–1742 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Kojima, S., Gendreau, K. L., Sher-Chen, E. L., Gao, P. & Green, C. B. Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin. Sci. Rep. 5, 17059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Y. et al. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mauvoisin, D. et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc. Natl Acad. Sci. USA 111, 167–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Jouffe, C. et al. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism. Sci. Rep. 6, 24631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kondratova, A. A. & Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 13, 325–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. van Galen, P. et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510, 268–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Mohrin, M. et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, L., Zeng, X., Ryoo, H. D. & Jasper, H. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet. 10, e1004568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ortiz-Zapater, E. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat. Med. 18, 83–90 (2012).

    Article  CAS  Google Scholar 

  62. Calderone, V. et al. Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease. Gastroenterology 150, 982–997.e930 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Hogan, B. Manipulating the Mouse Embryo: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1994).

    Google Scholar 

  64. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Janicke, A., Vancuylenberg, J., Boag, P. R., Traven, A. & Beilharz, T. H. ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3′ RACE applications. RNA 18, 1289–1295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Salmon, D. M. & Flatt, J. P. Effect of dietary fat content on the incidence of obesity among ad libitum fed mice. Int. J. Obes. 9, 443–449 (1985).

    CAS  PubMed  Google Scholar 

  67. Planet, E., Attolini, C. S., Reina, O., Flores, O. & Rossell, D. htSeqTools: high-throughput sequencing quality control, processing and visualization in R. Bioinformatics 28, 589–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. uORFdb (accessed April 2016); http://www.compgen.uni-muenster.de/tools/uorfdb/index.hbi?

Download references

Acknowledgements

We thank the Advance Digital Microscopy, Biostatistics/Bioinformatics, Histopathology, Mouse Mutant, and Functional Genomics facilities at IRB Barcelona. We also thank S. Aznar-Benitah, J. Guinovart and members of R.M.’s laboratory for useful discussion and T. Yates for correcting the manuscript. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO, BFU2011-30121, BIO2012-31043, BFU2014-54122-P, Consolider RNAREG CSD2009-00080, SAF2014-55473-R), the European Union FEDER funds, the Fundación Botín by the Banco Santander through its Santander Universities Global Division, the Scientific Foundation of the Spanish Association Against Cancer (AECC), and the Worldwide Cancer Research Foundation. C.M. held a ‘la Caixa’ predoctoral fellowship. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Government of Spain). CIBER is an initiative from the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

C.M. performed all the studies and contributed to experimental design, data analysis and interpretation, and manuscript and figure preparation. R.M. and M.F. conceived and directed the study. A.Z., M.F. and R.M. wrote the manuscript and discussed the study. J.M. contributed to in vivo mouse experiments. D.S., M.H.-A. and M.G.-R. provided technical and conceptual assistance for experiments in Fig. 2 and Supplementary Fig. 1. O.R. performed bioinformatic analysis of Figs 3 and 7.

Corresponding authors

Correspondence to Mercedes Fernandez or Raúl Méndez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 (associated to Fig. 1). Cpeb4 gene-targeted mice develop liver steatosis.

(a) Immunoblot displaying CPEB4 and α-Tubulin protein levels in Cpeb4+/+, Cpeb4+/− and Cpeb4−/− liver extracts. Unprocessed original scans of blots are shown in Supplementary Fig. 7g. (b) CPEB4 immunohistochemistry in WT and Cpeb4KO liver sections. Scale bar, 100 μm. (c) Cpeb4 mRNA expression, normalized to TBP transcript levels, in livers from WT (n = 8) and Cpeb4KO (n = 8) mice. Two-sided Student’s t test, P = 0.0001. (d) Changes in body weight of WT (n = 34) and Cpeb4KO (n = 32) mice fed standard diet. Two-way ANOVA, P = 0.3623. (e) Fed and overnight-fasted plasma glucose levels of mice fed HFD. WT-Fed, n = 8; WT-Fasted, n = 16; Cpeb4KO-Fed, n = 8; Cpeb4KO-Fasted, n = 14 mice. Two-way ANOVA, P = 0.001. (f) Changes in body weight of WT (n = 40) and Cpeb4KO (n = 28) mice fed HFD. Two-way ANOVA, P = 0.001. (g) Body weight of WT (n = 16) and Cpeb4KO (n = 10) mice aged for 80 weeks. Two-sided Student’s t test, P = 0.0191. (hj) 24-hour time course of RER (h), EE (i) and locomotor activity (j) of mice fed standard diet; WT, n = 12; Cpeb4KO, n = 12 mice. Two-way ANOVA. (k) Food intake (g/day) of WT (n = 8) and Cpeb4KO (n = 8) mice on HFD during 4 consecutive days. Two-way ANOVA, P = 0.7026. (l) Water intake in a 24-h period of WT (n = 12) and Cpeb4KO (n = 12) mice fed standard diet. Two-sided Student’s t test, P = 0.6823. (m) Plasma glucose levels of WT and Cpeb4KO fed, 6-h, and 24-h-fasted mice. WT-Fed, n = 20; WT-6hFasted, n = 22; WT-24hFasted, n = 22; Cpeb4KO-Fed, n = 20; Cpeb4KO-6hFasted, n = 20 mice; Cpeb4KO-24hFasted, n = 20 mice. Two-way ANOVA, P = 0.5986. (no) Fed and overnight fasted plasma insulin levels (n) and free fatty acid (FFA) plasma levels (o). Panel n: WT-Fed, n = 16; WT-Fasted, n = 18; Cpeb4KO-Fed, n = 18; Cpeb4KO-Fasted, n = 16 mice. Panel o: WT-Fed, n = 16; WT-Fasted, n = 18; Cpeb4KO-Fed, n = 18; Cpeb4KO-Fasted, n = 16 mice. Two-way ANOVA, P = 0.3629 (n), P = 0.6282 (o). (pq) Glucose levels (p) and insulin levels (q) during glucose tolerance test in WT and Cpeb4KO mice. Panel p: WT, n = 18; Cpeb4KO, n = 18 mice. Panel q: WT, n = 12; Cpeb4KO, n = 12 mice. Two-way ANOVA, P = 0.2920 (p),P = 0.4257 (q). (r) Glucagon tolerance test after 6 h fasting in WT (n = 18) and Cpeb4KO (n = 18) mice. Two-way ANOVA, P = 0.0541. s,Glucose produced by primary hepatocytes in culture after treatment for 4 h with vehicle (dimethyl sulfoxide, DMSO), with a combination of 10 μM forskolin, 20 mM lactate, and 2 mM pyruvate (FSK) or with a combination of 300 μM dibutyryl-cAMP and 100 nM dexamethasone (cAMP); n = 12 primary hepatocyte cell lines from independent animals. Two-way ANOVA, P = 0.8810. For cs, data are mean ± s.e.m. Experiments were replicated two (cg,ko,q), three (p,r) or four (hj,s) times from biologically independent samples with similar results.

Supplementary Figure 2 (associated to Fig. 2). Cpeb4 deletion causes mitochondrial dysfunction and defective lipid metabolism in hepatocytes.

(a) Cpeb4 mRNA expression in livers from WT (n = 8) and Cpeb4LKO (n = 8) mice. Two-sided Student’s t test, P = 0.026. (b) Immunoblot displaying CPEB4 and α-Tubulin protein levels in WT and Cpeb4LKO mice. Unprocessed original scans of blots are shown in Supplementary Fig. 7h. (c) Weight evolution of WT (n = 22) and Cpeb4LKO (n = 30) mice fed standard diet. Two-way ANOVA, P = 0.8032. (d) Glucose tolerance test after overnight fasting in WT (n = 16) and Cpeb4LKO (n = 16) mice. Two-way ANOVA, P = 0.2175. (e) Plasma alanine aminotransferase levels of WT (n = 12) and Cpeb4LKO (n = 12) mice fed standard diet. Two-sided Student’s t test, P = 0.6622. fg, Liver weight (f) and hepatic triglyceride content (g) of WT and Cpeb4LKO mice fed HFD. Panel f: WT, n = 44; Cpeb4LKO, n = 44 mice. Panel g: WT-CHOW, n = 12; WT-HFD, n = 18; Cpeb4LKO-CHOW, n = 20; Cpeb4LKO-HFD, n = 18 mice. Two-way ANOVA, P = 0.0212 (fP = 0.017 (g). (h) Photograph of the liver, and H&E and Oil Red O staining of liver sections from the same animals. Representative images of 20 independent experiments are shown. Scale bar, 100 μm. (i) Growth curve of WT (n = 44) and Cpeb4LKO (n = 48) mice on HFD. Two-way ANOVA, P = 0.2922. (j) Fasn and Scd1 gene expression analysis by qRT-PCR of livers from WT (n = 16) or Cpeb4LKO (n = 16) mice. Two-way ANOVA, P = 0.4274. (k) Analysis of palmitate uptake in primary hepatocytes; n = 18 biologically independent dishes per group. Two-sided Student’s t test, P = 0.9654. (l) Immunoblot for the indicated mitochondrial markers and loading controls in WT and Cpeb4KO liver extracts, n = 3 biologically independent samples. Unprocessed original scans of blots are shown in Supplementary Fig. 7i. (m) mtDNA quantification normalized to nuclear DNA content by qRT-PCR of livers from WT (n = 16) and Cpeb4KO (n = 16) mice. Two-sided Student’s t test, P = 0.750. For a,cg,ik and m, data are mean ± s.e.m. Experiments were replicated two (a,ce,g,j), three (k) or four (f,i) times from biologically independent samples with similar results.

Supplementary Figure 3 (associated to Fig. 4). CPEB4 depletion leads to defective adaptation to chronic ER-stress.

(a) Apoptosis analysis of WT and Cpeb4KO MEFs measured by flow cytometry as the percentage of annexin V-positive cells after treatment with H202 (100 μM) or ionizing radiation (IR) (5 Gy) for 24 h; n = 4 biologically independent MEF cell lines. Two-way ANOVA, P = 0.9775. (b) Left: TUNEL staining of liver sections of WT and Cpeb4LKO mice injected with 1 mg kg−1 TM and killed 48 h later. Scale bar, 100 μm. Arrows indicate apoptotic cells. Right: Quantification of the number of apoptotic cells in livers from WT (n = 20) and Cpeb4LKO (n = 20) mice. Two-sided Student’s t test, P = 0.0216. Data are mean ± s.e.m. Experiments in a,b were replicated two times from biologically independent samples with similar results.

Supplementary Figure 4 (associated to Figs 5 and 6). CPEB4 synthesis and translation of CPE-regulated mRNAs are upregulated by UPR.

(a) Atf4 mRNA analysis in WT MEFs treated with 1 μM thapsigargin (TG) for the indicated times. (b) qRT-PCR expression analysis of the different luciferase constructs in HepG2 cells treated with 0.1 μM TG for 6 h; n = 18 biologically independent dishes. Two-way ANOVA, P = 0.6067. (c) Left: Immunoblot for the indicated proteins in WT or PerkKO MEFs treated with 1.5 μM TG and harvested at the indicated times. Right: Immunoblot quantification. Unprocessed original scans of blots are shown in Supplementary Fig. 7j. (d) Total translation of Txnip assessed by ribosome profiling in MEFs treated with 1 μM TG for the indicated times (Reid D.W. et al., 2014). (e) Txnip 3′UTR sequence in various mammalian species. Conserved CPE-elements are highlighted. (f) Left: Txnip mRNA poly(A) tail length quantification by ePAT assay in WT and Cpeb4KO MEFs treated with TG for 2 h. Right: Quantification of the area under the curve (AU); n = 8 biologically independent MEF cell lines. Two-way ANOVA, P = 0.0105. Data are mean ± s.e.m. in a,c,f and mean ± s.d. in b. Experiments were replicated two (c,f) or three (b) times from biologically independent samples with similar results.

Supplementary Figure 5 (associated to Fig. 7). uORFs and CPEs determine mRNA activation kinetics, which is influenced by the circadian clock.

(a) Gene expression analysis by qRT-PCR of Bmal1 and Per2 in WT and Cpeb4KO mouse livers at the indicated ZT. Two-way ANOVA, P = 0.95. (b) Cpeb4 mRNA levels in livers of WT fed mice at the indicated ZTs.

Supplementary Figure 6 Working model: sequential waves of translational activation during ER-stress mediated by PERK/uORFs and CPEB4/CPEs.

The UPR triggers general translation inhibition. However, mRNAs harbouring uORFs in their 5′UTRs are translationally activated at early time points after ER-stress, including Cpeb4 mRNA. When CPEB4 is produced, it activates the translation of CPE-containing mRNAs at late time points generating a second wave of protein production.

Supplementary Figure 7 Unprocessed originals scans of blots.

(a) Western blot corresponding to Fig. 3a. (b) Western blot corresponding to Fig. 3e. (c) Western blot corresponding to Fig. 5a. (d) Western blot corresponding to Fig. 6b. (e) Western blot corresponding to Fig. 7d. (f) Western blot corresponding to Fig. 7e. (g) Western blot corresponding to Supplementary Fig. 1a. (h) Western blot corresponding to Supplementary Fig. 2b. (i) Western blot corresponding to Supplementary Fig. 2l. (j) Western blot corresponding to Supplementary Fig. 4c.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5681 kb)

Supplementary Table 1

Supplementary Information (XLSX 36 kb)

Supplementary Table 2

Supplementary Information (XLSX 12 kb)

Supplementary Table 3

Supplementary Information (XLSX 9 kb)

Supplementary Table 4

Supplementary Information (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maillo, C., Martín, J., Sebastián, D. et al. Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 19, 94–105 (2017). https://doi.org/10.1038/ncb3461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing