Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing

Abstract

Many tissues and organ systems in metazoans have the intrinsic capacity to regenerate, which is driven and maintained largely by tissue-resident somatic stem cell populations. Ageing is accompanied by a deregulation of stem cell function and a decline in regenerative capacity, often resulting in degenerative diseases. The identification of strategies to maintain stem cell function and regulation is therefore a promising avenue to allay a wide range of age-related diseases. Studies in various organisms have revealed a central role for metabolic pathways in the regulation of stem cell function. Ageing is associated with extensive metabolic changes, and interventions that influence cellular metabolism have long been recognized as robust lifespan-extending measures. In this Review, we discuss recent advances in our understanding of the metabolic control of stem cell function, and how stem cell metabolism relates to homeostasis and ageing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic regulation of stem cell pluripotency and quiescence.
Figure 2: Redox regulation of stem cell function.
Figure 3: Mitochondrial dysfunction and stem cell ageing.

Similar content being viewed by others

References

  1. Chandel, N. Navigating Metabolism (Cold Spring Harbor Laboratory, 2015).

    Google Scholar 

  2. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    CAS  PubMed  Google Scholar 

  3. Shyh-Chang, N., Daley, G. Q. & Cantley, L. C. Stem cell metabolism in tissue development and aging. Development 140, 2535–4257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kohli, L. & Passegué, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479–487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Folmes, C. D., Dzeja, P. P., Nelson, T. J & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, X. et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18, 325–332 (2013).

    CAS  PubMed  Google Scholar 

  8. Teslaa, T. & Teitell, M. A. Pluripotent stem cell energy metabolism: an update. EMBO J. 34, 138–153 (2015).

    CAS  PubMed  Google Scholar 

  9. Cho, Y. M. et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 1472–1478 (2006).

    CAS  PubMed  Google Scholar 

  10. Hom, J. R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, J. et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860–4873 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S. & St John, J. C. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034 (2007).

    CAS  PubMed  Google Scholar 

  15. Todd, L. R. et al. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol. Biol. Cell 21, 1225–1236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vazquez-Martin, A. et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging 4, 393–401 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Son, M. J. et al. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 22, 1957–1969 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523–1535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013).

    CAS  PubMed  Google Scholar 

  22. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    CAS  PubMed  Google Scholar 

  23. Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).

    CAS  PubMed  Google Scholar 

  24. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Adams, P. D., Jasper, H. & Rudolph, K. L. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell 16, 601–612 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pietras, E. M., Warr, M. & Passegué, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 195, 709–720 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maryanovich, M. et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat. Commun. 6, 7901 (2015).

    CAS  PubMed  Google Scholar 

  31. Takubo, K. et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    CAS  PubMed  Google Scholar 

  32. Maltepe, E. et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    CAS  PubMed  Google Scholar 

  33. Adelman, D. M. et al. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191–3203 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazumdar J. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat. Cell Biol. 12, 1007–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miharada, K. et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9, 330–344 (2011).

    CAS  PubMed  Google Scholar 

  36. Kocabas, F. et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120, 4963–4972 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mohrin, M. et al. Stem cell aging: a mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Luchsinger, L. L. et al. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528–531 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Katajisto, P. et al. Stem cells: asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Biteau, B., Hochmuth, C. E. & Jasper, H. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9, 402–411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. O'Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603–614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Amcheslavsky, A., Jiang, J. & Ip, Y. T. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4, 49–61 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333–2344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442–455 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Biteau, B. et al. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. 6, 1001159 (2010).

    Google Scholar 

  49. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623–634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 1–12 (2011).

    Google Scholar 

  52. Hur, J. H. et al. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells. Aging 5, 662–681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968 (2008).

    CAS  PubMed  Google Scholar 

  54. Fu, X., Zhu, M. J., Dodson, M. V. & Du, M. AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J. Biol. Chem. 290, 26445–26456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ryall, J. G. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).

    CAS  PubMed  Google Scholar 

  57. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  58. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    CAS  PubMed  Google Scholar 

  61. Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    CAS  PubMed  Google Scholar 

  63. Jasper, H. & Jones, D. L. Metabolic regulation of stem cell behavior and implications for aging. Cell Metab. 12, 561–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Amcheslavsky, A., Ito, N., Jiang, J. & Ip, Y. T. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol. 193, 695–710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kapuria, S., Karpac, J., Biteau, B., Hwangbo, D. & Jasper, H. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genet. 8, e1003045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Quan, Z., Sun, P., Lin, G. & Xi, R. TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation via Rheb–TorC1–S6K but independent of nutrition status or Notch activation. J. Cell Sci. 126, 3884–3892 (2013).

    CAS  PubMed  Google Scholar 

  67. Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sampson, L. L., Davis, A. K., Grogg, M. W. & Zheng, Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 30, 1263–1275 (2016).

    CAS  PubMed  Google Scholar 

  70. Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of Tuberous Sclerosis Complex-associated lesions. Cell Stem Cell 9, 447–462 (2011).

    CAS  PubMed  Google Scholar 

  71. Easley, C. A. et al. mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram. 12, 263–273 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, T. et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10, 908–911 (2011).

    CAS  PubMed  Google Scholar 

  73. Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert . Nature 510, 393–396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. II & Scorrano, L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342, 734–737 (2013).

    CAS  PubMed  Google Scholar 

  76. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  77. Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Qian, P. et al. The Dlk1–Gtl2 locus preserves LT-HSC function by inhibiting the PI3K–mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell 18, 214–228 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).

    CAS  PubMed  Google Scholar 

  81. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Malinska, D., Kudin, A. P., Bejtka, M. & Kunz, W. S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion 12, 144–148 (2012).

    CAS  PubMed  Google Scholar 

  84. Biteau, B. & Jasper, H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138, 1045–1055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamanaka, R. B. et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 6, ra8 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12, 774–786 (2013).

    CAS  PubMed  Google Scholar 

  87. Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/AKT-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Paul, M. K. et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling. Cell Stem Cell 15, 199–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bakker, S. T. & Passegué, E. Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp. Hematol. 41, 915–923 (2013).

    CAS  PubMed  Google Scholar 

  90. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  92. Rimmelé, P. et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16, 1164–1176 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 115, 443–452 (2010).

    CAS  PubMed  Google Scholar 

  94. Ludin, A. et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 21, 1605–1619 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Itkin, T. et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120, 1843–1855 (2012).

    CAS  PubMed  Google Scholar 

  97. Ludin, A. et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13, 1072–1082 (2012).

    CAS  PubMed  Google Scholar 

  98. Golan, K. et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119, 2478–2488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ishikawa, E. T. et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl Acad. Sci. USA 109, 9071–9076 (2012).

    CAS  Google Scholar 

  100. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsui, K. et al. NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells. Biochem. Biophys. Res. Commun. 418, 811–817 (2012).

    CAS  PubMed  Google Scholar 

  103. Rimmelé, P. et al. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Rep. 3, 44–59 (2014).

    Google Scholar 

  104. Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319–327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Miyamoto, K. et al. FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112, 4485–4493 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mehta, A. et al. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42, 1021–1032 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  108. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  109. Murakami, S. & Motohashi, H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic. Biol. Med. 88, 168–178 (2015).

    CAS  PubMed  Google Scholar 

  110. Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell. 14, 76–85 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 5, 557–561 (2003).

    CAS  PubMed  Google Scholar 

  112. Park, C. B. & Larsson, N. G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  114. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  115. Chen, M. L. et al. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood 114, 4045–4053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahlqvist, K. J. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15, 100–109 (2011).

    Google Scholar 

  117. Hämäläinen, R. H. et al. mtDNA mutagenesis disrupts pluripotent stem cell function by altering redox signaling. Cell Rep. 11, 1614–1624 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Norddahl, G. L. et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8, 499–510 (2011).

    CAS  PubMed  Google Scholar 

  119. Cosentino, C. & Mostoslavsky, R. Metabolism, longevity and epigenetics. Cell Mol. Life Sci. 70, 1525–1541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715–736 (2015).

    CAS  PubMed  Google Scholar 

  122. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Beerman, I. & Rossi, D. J. Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16, 613–625 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chinopoulos, C. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J. Neurosci Res. 91, 1030–1043 (2013).

    CAS  PubMed  Google Scholar 

  125. Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007).

    CAS  PubMed  Google Scholar 

  126. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS  PubMed  Google Scholar 

  127. Salminen, A., Kauppinen, A., Hiltunen, M. & Kaarniranta, K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev. 16, 45–65 (2014).

    CAS  PubMed  Google Scholar 

  128. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, 201 (2007).

    Google Scholar 

  129. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    PubMed  PubMed Central  Google Scholar 

  131. Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6, 19194 (2011).

    Google Scholar 

  133. Florian, M. C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, X. P. et al. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence. Cell Biol Int. 37, 940–948 (2013).

    CAS  PubMed  Google Scholar 

  135. Tie, G., Messina, K. E., Yan, J., Messina, J.A. & Messina, L. M. Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells. J. Am. Heart Assoc. 3, 000241 (2014).

    Google Scholar 

  136. Chen, J., Astle, C. M. & Harrison, D. E. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp. Hematol. 31, 1097–1103 (2003).

    CAS  PubMed  Google Scholar 

  137. Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810–823 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Passegué, E, Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    PubMed  PubMed Central  Google Scholar 

  139. Tang, D. et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J. Exp. Med. 213, 535–553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Martin-Montalvo, A. & de Cabo, R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid. Redox Signal. 19, 310–320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. López-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hekimi, S., Lapointe, J. & Wen, Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 21, 569–576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tanaka, Y. et al. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J. 29, 1510–1522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    CAS  PubMed  Google Scholar 

  146. Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.S.C. is supported by NIH HL122062, AG049665 and HL071643; H.J. by NIH AG028127, GM100196, AG047497 and EY018177; T.T.H. by an AHA Predoctoral Fellowship; and E.P. by an LLS Scholar Award, PBBR and Glenn Foundation Research Awards, and NIH HL111266, HL092471 and CA184014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Passegué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandel, N., Jasper, H., Ho, T. et al. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol 18, 823–832 (2016). https://doi.org/10.1038/ncb3385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing