Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size

A Corrigendum to this article was published on 27 October 2016

This article has been updated

Abstract

LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO–LGR4/5–ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4+ hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO–LGR4/5–ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lgr4 and Lgr5 are co-expressed in pericentral hepatocytes.
Figure 2: LGR4 and LGR5 lineage tracing during liver homeostasis.
Figure 3: LGR4 and LGR5 receptors control liver zonation.
Figure 4: RSPO blockade disrupts hepatic Wnt/β-catenin signalling and zonation.
Figure 5: ZNRF3 and RNF43 control liver zonation.
Figure 6: RSPO1 controls liver zonation through LGR4 and LGR5 receptors.
Figure 7: Loss of LGR4 and LGR5 results in impaired liver homeostasis and regeneration.
Figure 8: RSPO1 promotes hepatocyte proliferation and liver regeneration through LGR4 and LGR5 receptors.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Change history

  • 27 September 2016

    In the version of this Article originally published, the authors inadvertently omitted a key reference. The following reference has been added: '48. Rocha, A. S. et al. The angiocrine factor Rspondin3 is a key determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).' References 48–56 have been renumbered accordingly. Furthermore, a new sentence citing this reference has been added at the end of the first paragraph in the Discussion: 'A recent report that was published during the final revision of our manuscript suggests a role for pericentrally confined RSPO3 in metabolic liver zonation48.' These changes have been made in the online versions of the Article.

References

  1. Gebhardt, R. & Hovhannisyan, A. Organ patterning in the adult stage: the role of Wnt/β-catenin signaling in liver zonation and beyond. Dev. Dyn. 239, 45–55 (2010).

    CAS  PubMed  Google Scholar 

  2. Jungermann, K. & Katz, N. Functional specialization of different hepatocyte populations. Phys. Rev. 69, 708–764 (1989).

    CAS  Google Scholar 

  3. Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16, 179–203 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Monga, S. P. Role and regulation of β-catenin signaling during physiological liver growth. Gene Expr. 16, 51–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Torre, C., Perret, C. & Colnot, S. Transcription dynamics in a physiological process: β-catenin signaling directs liver metabolic zonation. Int. J. Biochem. Cell Biol. 43, 271–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Zaret, K. S. Regulatory phases of early liver development: paradigms of organogenesis. Nat. Rev. Genet. 3, 499–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Apte, U. et al. β-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol. 175, 1056–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benhamouche, S. et al. Apc tumor suppressor gene is the ‘zonation-keeper’ of mouse liver. Dev. Cell 10, 759–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Burke, Z. D. et al. Liver zonation occurs through a β-catenin-dependent, c-Myc-independent mechanism. Gastroenterology 136, 2316–2324 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Monga, S. P., Pediaditakis, P., Mule, K., Stolz, D. B. & Michalopoulos, G. K. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33, 1098–1109 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nejak-Bowen, K. & Monga, S. P. Wnt/β-catenin signaling in hepatic organogenesis. Organogenesis 4, 92–99 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nejak-Bowen, K. N. et al. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology 51, 1603–1613 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Sekine, S., Gutierrez, P. J., Lan, B. Y., Feng, S. & Hebrok, M. Liver-specific loss of β-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45, 361–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Sekine, S., Lan, B. Y., Bedolli, M., Feng, S. & Hebrok, M. Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43, 817–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, J. et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation. Hepatology 60, 964–976 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Carmon, K. S., Gong, X., Lin, Q., Thomas, A. & Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc. Natl Acad. Sci. USA 108, 11452–11457 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Glinka, A. et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep. 12, 1055–1061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruffner, H. et al. R-Spondin potentiates Wnt/β-catenin signaling through orphan receptors LGR4 and LGR5. PLoS ONE 7, e40976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kinzel, B. et al. Functional roles of Lgr4 and Lgr5 in embryonic gut, kidney and skin development in mice. Dev. Biol. 390, 181–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Koo, B. K. & Clevers, H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 147, 289–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Bird, T. G. & Forbes, S. J. Two fresh streams to fill the liver’s hepatocyte pool. Cell Stem Cell 17, 377–378 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Font-Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaret, K. S. Regenerative biology: maintaining liver mass. Nature 524, 165–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karaca, G. et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS ONE 9, e83987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colnot, S. & Perret, C. Molecular Pathology of Liver Diseases Vol. Molecular Pathology Library 5. (ed. S. P. Monga) (Springer Science and Business Media, 2011).

  36. Ferrer-Vaquer, A. et al. A sensitive and bright single-cell resolution live imaging reporter of Wnt/ß-catenin signaling in the mouse. BMC Dev. Biol. 10, 121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerbal-Chaloin, S. et al. The WNT/β-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol. Pharmacol. 86, 624–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Klochendler, A. et al. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev. Cell 23, 681–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Miyajima, A., Tanaka, M. & Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Gougelet, A. et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59, 2344–2357 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Fitamant, J. et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10, 1692–1707 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marti, P. et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62, 1497–1510 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Rocha, A. S. et al. The angiocrine factor Rspondin3 is a key determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Bralet, M. P., Branchereau, S., Brechot, C. & Ferry, N. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am. J. Pathol. 144, 896–905 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 44, 690–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Tchorz, J. S. et al. A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters. PLoS ONE 7, e30011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Mitchell, C. & Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Dill, M. T. et al. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 57, 1607–1619 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wieland, S. et al. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology 59, 2121–2130 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, D. & Smyth, G. K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Wirsching, C. Manneville, M. Lemaistre, M. Haffner, B. Leonhard, S. Ley, N. Guo, T. Lewis, M. Li, M. van de Velde, D. Breustedt, H. Lei, R. Boomer, S. Zurbruegg, L. Perrot, F. Cordoba, S. Schuierer, A. Arif and J. Gfeller for technical assistance. For helpful discussion and critical reading of the manuscript, we thank E. Wiellette, G. Hintzen, B. Dietrich, D. Liu, F. Bassilana, C. Parker, K. Seuwen and J. Porter. This work was supported by the Leverhulme Trust ECF-2012-262 to L.B., SNF grant 310030B_147089 to M.H.H., MRC Centre Grant and UKRMP Niche hub grant MR/K026666/1 to S.J.F. and the Novartis Institutes for BioMedical Research Postdoctoral Program.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work and data analysis: L.P.-P., V.O., L.B., D.C., M.P., Y.X., A.D., P.M., N.B., M.T.D., W.C., R.Z. and P.C.; data analysis: F.N., G.R., S.B., R.V., L.M.T. and J.S.T.; mouse model generation: A.I., M.M., B.K., Y.Y., X.M. and T.B.N.; RSPO1 production: D.R. and A.L.; concept and design, and manuscript writing: L.P.-P., L.B., C.U., T.B., F.C., M.H.H., S.J.F., H.R. and J.S.T.

Corresponding author

Correspondence to Jan S. Tchorz.

Ethics declarations

Competing interests

All authors except S.J.F., L.B., L.M.T., M.H.H., D.C. and M.T.D. are employed by and/or shareholders of Novartis Pharma AG.

Integrated supplementary information

Supplementary Figure 1 LGR4 and LGR5 expression and mouse model generation.

(a) Lgr4 and Lgr5 ISH in liver parenchyma of control mice. The images are representative for 4 mice each. (b) Percent of hepatocytes expressing Lgr4 and Lgr5 in the indicated liver zones. n = 4 mice. These data involved assessment of 3346 cells from the indicated mice. (c) Scheme depicting the generation of Rnf43-LacZ mice. (d) Scheme depicting the generation of liver-specific Lgr4/5dLKO mice by crossing with AlbCre mice. Data represent mean ± s.d. Scale bars, (a) 20 μm and (magnification in a) 10 μm.

Supplementary Figure 2 LGR4 and LGR5 lineage tracing.

(a) Scheme depicting lineage tracing in Lgr4ki/R26-LacZ and Lgr5ki/R26-LacZ mice. (b) LacZ staining in Lgr4ki/R26-LacZ mice showing LGR4 + hepatocytes in the liver (magnified area: parenchyma) after 10 days or 10 months of tracing. (c) LacZ staining in Lgr5ki/R26-LacZ mice showing no LGR5 + hepatocytes in the liver (magnified area: parenchyma) after 10 days or 18 months of tracing. (d) Distribution of Lgr5ki/R26-LacZ + hepatocytes after 10 days or 18 months of tracing. n = 3 mice per group. These data involved assessment of 210 cells (10 days) and 330 cells (18 months) from the indicated mice. (e) Axin2 ISH and β-Gal staining in Lgr5ki/R26-LacZ mice after 10 days of tracing showing Axin2 + /LacZ + hepatocytes. (f) LacZ staining, Axin2 and Lgr5 co-ISH in consecutive liver sections of Lgr5ki/R26-LacZ mice after 10 days of tracing. (g) Percent of hepatocytes expressing Axin2 and Lgr5 in Lgr5ki/R26-LacZ + and Lgr5ki/R26-LacZ- hepatocytes. n = 4 mice. (h) Scheme depicting lineage tracing in Lgr5ki/tdTOM mice 2 days post-PH. (i) tdTOM and Ki67 staining in consecutive liver sections of Lgr5ki/R26-tdTOM mice 2 days post-PH. Arrowheads point at tdTOM + /Ki67 + hepatocytes. (j) tdTOM + /Ki67 + hepatocytes quantified in Lgr5ki/R26-tdTOM mice 2 days post-PH. n = 4 mice. (k) Scheme depicting EdU injections in WT mice. (l) GS and EdU co-staining in control mice. Arrowheads point at EdU + hepatocytes. (m) EdU + hepatocytes quantified in liver zones of control mice. n = 5 mice. (n) Distribution of EdU + hepatocytes in the indicated liver zones. n = 5 mice. These data involved assessment of (d) 210 cells (10 days) and 330 cells (18 months); (g) 1970 LacZ- and 87 LacZ + cells; (j) 14681 tdTOM- and 49 tdTOM + cells; (m) 2650 cells; and (n) 577 cells from the indicated mice. CV, central vein; PV, portal vein. The images in (b,c) and (e,f,i,l) are representative for 3 and 4 mice each, respectively. Data represent mean ± s.d. ns, not significant; two-tailed unpaired t-test (j) and one-way ANOVA with Tukey’s test (m) were used. Scale bars, (b,c,f) 100 μm, (magnifications in b,c) 50 μm, (e,l, magnification in f) 20 μm and (i) 50 μm.

Supplementary Figure 3 Role of LGR4 and LGR5 during hepatocyte maturation and differentiation.

(a) GS and CK19 co-staining in P2, P10 and P30 control and Lgr4/5dLKO mice. (b) GS + staining quantified in the indicated mice. n = 4 mice (P10 control and P30 control) and 5 mice (all other groups). (c) HNF4α and CK19 co-staining in P2, P10 and P30 control and Lgr4/5dLKO mice. (d) SOX9 staining in P2, P10 and P30 control and Lgr4/5dLKO mice. CV, central vein; PV, portal vein. The images in (a,c,d) are representative for 29 mice, and the stainings were repeated 2 times. Data represent mean ± s.d. , P < 0.01; , P < 0.001; , P < 0.0001; two-tailed unpaired t-test (b) was used. Scale bars, 20 μm.

Supplementary Figure 4 Lgr4 and Lgr5 control liver zonation.

(a) Volcano plot showing pericentral genes (in green), periportal genes (in blue) and genes involved in Wnt signalling (in purple) that are differentially expressed in livers of the indicated mice. n = 5 mice per group. (b) Gene sets downregulated in livers of Lgr4/5dLKO mice compared to control mice. n = 5 mice per group. (c,d) ARG1 (c) and PCK1 (d) staining in the indicated mice. CV, central vein; PV, portal vein. The images in (c,d) are representative for 10 mice, and the stainings were repeated 3 times. Empirical Bayes with Benjamini–Hochberg test (a), and weighted Kolmogorov–Smirnov and Mann–Whitney U-test with Benjamini-Hochberg test (b) were used. Scale bars, 100 μm.

Supplementary Figure 5 Role of LGR4 and LGR5 in the control of liver growth.

(a,b,c) GS, CK19 and Ki67 co-staining in P2 (a), P10 (b) and P30 (c) control and Lgr4/5dLKO mice, showing proliferating hepatocytes (arrowheads). Bottom: Hepatocyte proliferation quantified in liver zones of the indicated mice. n = 4 mice (P30 controls), 5 mice (P2 and P10), and 6 mice (P30 Lgr4/5dLKO). These data involved assessment of 2582 cells (P2 control), 2705 cells (P2 Lgr4/5dLKO), 4217 cells (P10 control), 3911 cells (P10 Lgr4/5dLKO), 2882 cells (P30 control) and 3171 cells (P30 Lgr4/5dLKO) from the indicated mice. (d) Relative liver weight of the indicated mice. n = 5 mice (P2 control) and 6 mice (all other groups). (e) Ki67 staining of the indicated mice at embryonic day (E)16.5. (f) Liver cell proliferation quantified in the indicated mice at E16.5. n = 5 mice (control, Lgr5LKO and Lgr4/5dLKO) and 6 mice (Lgr4LKO). CV, central vein; PV, portal vein. The images in (ac) and (e) are representative for 30 and 21 mice, respectively, and the stainings were repeated 2 times. Data represent mean ± s.d. , P < 0.05; , P < 0.01; , P < 0.001; ns, not significant; two-tailed unpaired t-test (ad, f) was used. Scale bars, 50 μm.

Supplementary Figure 6 Role of LGR4 and LGR5 during liver regeneration.

(a) Axin2 ISH in wild type mice +/− PH. (b) Axin2 ISH quantified in wild type mice +/− PH in the indicated liver zones. n = 5 mice (WT) and 3 mice (WT d2 post-PH). These data involved assessment of 4225 cells (WT) and 1905 cells (WT d2 post-PH) from the indicated mice. (c) Volcano plot showing genes differentially expressed in livers of the indicated mice. n = 5 mice per group. (d) Lgr4 and Lgr5 ISH in wild type mice +/− PH. (e,f) Lgr4 (e) and Lgr5 (f) ISH quantified in wild type mice +/− PH in the indicated liver zones. n = 5 mice (WT, Lgr5), 4 mice (WT, Lgr4) and 3 mice (WT d2 post-PH). (g) Volcano plot showing genes differentially expressed in livers of the indicated mice. n = 5 mice per group. (h) Scheme depicting lineage tracing in Lgr5ki/R26-LacZ mice 7 days post-PH. (i) LacZ staining showing that Lgr5 + hepatocytes (arrowheads) did not overtly proliferate during liver regeneration following PH. CV, central vein; PV, portal vein. The images in (a,d) and (i) are representative for 8 and 6 mice, respectively. Data represent mean ± s.d. , P < 0.05; , P < 0.0001; two-way ANOVA with Sidak’s test (b,e,f) and Empirical Bayes with Benjamini–Hochberg test (c,g) were used. Scale bars, (a,d) 10 μm and (i) 100 μm. Statistics source data for (b,e,f) can be found in Supplementary Table 4.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1394 kb)

Supplementary Table 1

Supplementary Information (XLSX 47 kb)

Supplementary Table 2

Supplementary Information (XLSX 71 kb)

Supplementary Table 3

Supplementary Information (XLSX 11 kb)

Supplementary Table 4

Supplementary Information (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planas-Paz, L., Orsini, V., Boulter, L. et al. The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 18, 467–479 (2016). https://doi.org/10.1038/ncb3337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing