Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of nuclear architecture on the efficiency of double-strand break repair

Abstract

The most dangerous insults to the genome’s integrity are those that break both strands of the DNA. Double-strand breaks can be repaired by homologous recombination; in this conserved mechanism, a global genomic homology search finds sequences similar to those near the break, and uses them as a template for DNA synthesis and ligation1. Chromosomes occupy restricted territories within the nucleus2,3. We show that yeast genomic regions whose nuclear territories overlap recombine more efficiently than sequences located in spatially distant territories. Tethering of telomeres and centromeres4,5 reduces the efficiency of recombination between distant genomic loci, lowering the chances of non-allelic recombination. Our results challenge present models that posit an active scanning of the whole nuclear volume by the broken chromosomal end; they demonstrate that the search for homology is a limiting step in homologous recombination, and emphasize the importance of nuclear organization in genome maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The efficiency of recombination depends on nuclear localization.
Figure 2: Tethering by centromeres and telomeres affects both intrachromosomal and interchromosomal recombination.
Figure 3: Arm length, and not context, determines homologous recombination efficiency; a shortened chromosome has increased repair capability.
Figure 4: Kinetics and genetic control of DSB repair.

Similar content being viewed by others

References

  1. Barzel, A. & Kupiec, M. Finding a match: how do homologous sequences get together for recombination? Nat. Rev. Genet. 9, 27–37 (2008).

    Article  CAS  Google Scholar 

  2. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    Article  Google Scholar 

  3. Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5, 1031–1037 (2008).

    Article  CAS  Google Scholar 

  4. Taddei, A., Schober, H. & Gasser, S. M. The budding yeast nucleus. Cold Spring Harb. Perspect. Biol. 2, a000612 (2010).

    Article  Google Scholar 

  5. Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723–733 (2011).

    Article  CAS  Google Scholar 

  6. Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423–427 (2012).

    Article  CAS  Google Scholar 

  7. Burgess, S. M. & Kleckner, N. Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Gen. Dev. 13, 1871–1883 (1999).

    Article  CAS  Google Scholar 

  8. Goldman, A. S. & Lichten, M. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144, 43–55 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  10. Therizols, P., Duong, T., Dujon, B., Zimmer, C. & Fabre, E. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc. Natl Acad. Sci. USA 107, 2025–2030 (2010).

    Article  CAS  Google Scholar 

  11. Schober, H. et al. Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res. 18, 261–271 (2008).

    Article  CAS  Google Scholar 

  12. Agmon, N., Pur, S., Liefshitz, B. & Kupiec, M. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res. 37, 5081–5092 (2009).

    Article  CAS  Google Scholar 

  13. Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 23, 1403–1417 (2003).

    Article  CAS  Google Scholar 

  14. Inbar, O. & Kupiec, M. Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner. Curr. Genet. 38, 23–32 (2000).

    Article  CAS  Google Scholar 

  15. Wong, H. et al. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22, 1881–1890 (2012).

    Article  CAS  Google Scholar 

  16. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675–682 (2007).

    Article  CAS  Google Scholar 

  17. Kaye, J. A. et al. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14, 2096–2106 (2004).

    Article  CAS  Google Scholar 

  18. Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA 101, 12592–12597 (2004).

    Article  CAS  Google Scholar 

  19. Guacci, V. & Kaback, D. B. Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae. Genetics 127, 475–488 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011).

    Article  CAS  Google Scholar 

  21. Hiraga, S., Botsios, S. & Donaldson, A. D. Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. J. Cell Biol. 183, 641–651 (2008).

    Article  CAS  Google Scholar 

  22. Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol. 179, 845–854 (2007).

    Article  CAS  Google Scholar 

  23. Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Gen. Dev. 26, 369–383 (2012).

    Article  CAS  Google Scholar 

  24. Wilson, J. H., Leung, W. Y., Bosco, G., Dieu, D. & Haber, J. E. The frequency of gene targeting in yeast depends on the number of target copies. Proc. Natl Acad. Sci. USA 91, 177–181 (1994).

    Article  CAS  Google Scholar 

  25. Melamed, C. & Kupiec, M. Effect of donor copy number on the rate of gene conversion in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 235, 97–103 (1992).

    Article  CAS  Google Scholar 

  26. Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).

    Article  CAS  Google Scholar 

  27. Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14, 502–509 (2012).

    Article  CAS  Google Scholar 

  28. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    Article  CAS  Google Scholar 

  29. Goodarzi, A. A., Kurka, T. & Jeggo, P. A. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat. Struct. Mol. Biol. 18, 831–839 (2011).

    Article  CAS  Google Scholar 

  30. Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N. & Kameoka, S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188–1201 (2008).

    Article  CAS  Google Scholar 

  31. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    Article  CAS  Google Scholar 

  32. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2012).

    Article  CAS  Google Scholar 

  33. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  Google Scholar 

  34. De, S. & Babu, M. M. Genomic neighbourhood and the regulation of gene expression. Curr. Opin. Cell Biol. 22, 326–333 (2010).

    Article  CAS  Google Scholar 

  35. Nussenzweig, A. & Nussenzweig, M. C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).

    Article  CAS  Google Scholar 

  36. Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L. A. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol. 29, 1109–1113 (2011).

    Article  CAS  Google Scholar 

  37. Vollrath, D., Davis, R. W., Connelly, C. & Hieter, P. Physical mapping of largeDNA by chromosome fragmentation. Proc. Natl Acad. Sci. USA 85, 6027–6031 (1988).

    Article  CAS  Google Scholar 

  38. Gauss, R., Trautwein, M., Sommer, T. & Spang, A. New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22, 1–12 (2005).

    Article  CAS  Google Scholar 

  39. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Israel Science Foundation and the Israeli Ministry of Science and Technology to M.K. N.A. was supported by an Eshkol fellowship from the Israeli Ministry of Science and Technology. C.Z. thanks Institut Pasteur, Agence Nationale de la Recherche (grant ANR-09-PIRI-0024) and Fondation pour la Recherche Médicale (Équipe FRM) for support. E.F. thanks Institut Pasteur and Agence Nationale de la Recherche (grant ANR-09-PIRI-0024).

Author information

Authors and Affiliations

Authors

Contributions

E.F., C.Z., N.A. and M.K. conceived the project and wrote the paper. N.A., B.L. and M.K. created yeast strains and carried out the recombination experiments. E.F. mapped the cassette locations within the nucleus and C.Z. carried out the statistical analyses.

Corresponding authors

Correspondence to Christophe Zimmer, Emmanuelle Fabre or Martin Kupiec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 772 kb)

Supplementary Table 1

Supplementary Information (XLSX 9 kb)

Supplementary Table 2

Supplementary Information (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agmon, N., Liefshitz, B., Zimmer, C. et al. Effect of nuclear architecture on the efficiency of double-strand break repair. Nat Cell Biol 15, 694–699 (2013). https://doi.org/10.1038/ncb2745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing