Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels

Subjects

Abstract

In cells, a complex network of proteins regulates the dynamic growth of microtubules that is essential for division and migration. In vitro approaches with purified components have so far been unable to reconstitute fast microtubule growth observed in vivo 1,2,3. Here we show that two well-studied plus-end-binding proteins—end-tracking protein EB1 and microtubule polymerase XMAP215—act together to strongly promote microtubule growth to cellular rates. Unexpectedly, the combined effects of XMAP215 and EB1 are highly synergistic, with acceleration of growth well beyond the product of the individual effects of either protein. The synergistic growth promotion does not rely on any of the canonical EB1 interactions, suggesting an allosteric interaction through the microtubule end. This hypothesis is supported by the finding that taxol and XMAP215, which have non-overlapping binding sites on tubulin, also act synergistically on growth. The increase in growth rates is accompanied by a strong enhancement of microtubule catastrophe by EB1, thereby rendering the fast and dynamic microtubule behaviour typically observed in cells2,4,5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EB1 and XMAP215 synergistically regulate microtubule dynamics.
Figure 2: Synergy is not a consequence of a direct interaction between EB1 and XMAP215.
Figure 3: Synergistic promotion of growth can also be achieved by XMAP215 in combination with taxol.
Figure 4: Model for catalysis of microtubule growth.

Similar content being viewed by others

References

  1. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  Google Scholar 

  2. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  CAS  Google Scholar 

  3. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  Google Scholar 

  4. Srayko, M., Kaya, A., Stamford, J. & Hyman, A. A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell 9, 223–236 (2005).

    Article  CAS  Google Scholar 

  5. Komarova, Y. A. et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 184, 691–706 (2009).

    Article  CAS  Google Scholar 

  6. Stepanova, T. et al. History-dependent catastrophes regulate axonal microtubule behaviour. Curr. Biol. 20, 1023–1028 (2010).

    Article  CAS  Google Scholar 

  7. Bechstedt, S. & Brouhard, G. J. Doublecortin recognizes the 13-protofilamentmicrotubule cooperatively and tracks microtubule ends. Dev. Cell 23, 181–192 (2012).

    Article  CAS  Google Scholar 

  8. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  Google Scholar 

  9. Brouhard, G. J. et al. XMAP215 Is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    Article  CAS  Google Scholar 

  10. Widlund, P. O. et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl Acad. Sci. USA 108, 2741–2746 (2011).

    Article  CAS  Google Scholar 

  11. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223–1233 (2008).

    Article  CAS  Google Scholar 

  12. Dixit, R. et al. Microtubule plus-end tracking by CLIP-170 requires EB1. Proc. Natl Acad. Sci. USA 106, 492–497 (2009).

    Article  CAS  Google Scholar 

  13. Zanic, M., Stear, J. H., Hyman, A. A. & Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 4, e7585 (2009).

    Article  Google Scholar 

  14. Niethammer, P. et al. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol. 5, e29 (2007).

    Article  Google Scholar 

  15. Vitre, B. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell Biol. 10, 415–421 (2008).

    Article  CAS  Google Scholar 

  16. Blake-Hodek, K. A., Cassimeris, L. & Huffaker, T. C. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol. Biol. Cell 21, 2013–2023 (2010).

    Article  CAS  Google Scholar 

  17. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009).

    Article  CAS  Google Scholar 

  18. Kronja, I., Kruljac-Letunic, A., Caudron-Herger, M., Bieling, P. & Karsenti, E. XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. Mol. Biol. Cell 20, 2684–2696 (2009).

    Article  CAS  Google Scholar 

  19. Gell, C. et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol. 95, 221–245 (2010).

    Article  CAS  Google Scholar 

  20. Manna, T., Honnappa, S., Steinmetz, M. O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. Biochemistry 47, 779–786 (2008).

    Article  CAS  Google Scholar 

  21. Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A. & Surrey, T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371–382 (2012).

    Article  CAS  Google Scholar 

  22. van der Vaart, B. et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J. Cell Biol. 193, 1–27 (2011).

    Article  Google Scholar 

  23. Li, W. et al. EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells. J. Cell Biol. 193, 973–983 (2011).

    Article  CAS  Google Scholar 

  24. Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A TOG:-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012).

    Article  CAS  Google Scholar 

  25. Georges, des, A. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat. Struct. Mol. Biol. 15, 1102–1108 (2008).

    Article  Google Scholar 

  26. Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

    Article  CAS  Google Scholar 

  27. Northrup, S. H. & Erickson, H. P. Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc. Natl Acad. Sci. USA 89, 3338–3342 (1992).

    Article  CAS  Google Scholar 

  28. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, 2001).

    Google Scholar 

  29. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  Google Scholar 

  30. Gardner, M. K. et al. Rapid microtubule self-assembly kinetics. Cell 146, 582–592 (2011).

    Article  CAS  Google Scholar 

  31. Li, W. et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol. 199, 849–862 (2012).

    Article  CAS  Google Scholar 

  32. Ranjith, P., Lacoste, D., Mallick, K. & Joanny, J.-F. Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis. Biophys. J. 96, 2146–2159 (2009).

    Article  CAS  Google Scholar 

  33. Mitchison, T. J. & Kirschner, M. W. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  Google Scholar 

  34. O’Brien, E. T., Voter, W. A. & Erickson, H. P. GTP hydrolysis during microtubule assembly. Biochemistry 26, 4148–4156 (1987).

    Article  Google Scholar 

  35. Walker, R. A. et al. Dynamic instability of individual microtubules analysed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  36. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  Google Scholar 

  37. Rice, L. M., Montabana, E. A. & Agard, D. A. The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl Acad. Sci. USA 105, 5378–5383 (2008).

    Article  CAS  Google Scholar 

  38. Wang, H-W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005).

    Article  CAS  Google Scholar 

  39. Prota, A. E. et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339, 587–590 (2013).

    Article  CAS  Google Scholar 

  40. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems (Wiley, 1975).

    Google Scholar 

Download references

Acknowledgements

We thank M. Braun (MPI-CBG, Dresden, Germany) for the gift of EB1ΔC protein; S. Reber for help with protein expression and purification; M. Aliee, A. Clarke and M. Neetz, with whom this project was initiated as a part of the PhD programme course; G. Brouhard, S. Diez and M. Gardner for critical evaluation of the manuscript; and members of the Howard laboratory for discussions, reading and feedback. M.Z. was supported by a Cross-Disciplinary Fellowship from the International Human Frontier Science Program Organization. P.O.W. was supported by a European Molecular Biology Organization long-term fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., P.O.W., A.A.H. and J.H. designed research; M.Z. and P.O.W. performed research; M.Z. and J.H. analysed data; M.Z. and J.H. developed the theoretical model; M.Z., A.A.H. and J.H. wrote the paper.

Corresponding author

Correspondence to Jonathon Howard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 213 kb)

Supplementary Table 1

Supplementary Information (XLSX 43 kb)

Supplementary Table 2

Supplementary Information (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanic, M., Widlund, P., Hyman, A. et al. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat Cell Biol 15, 688–693 (2013). https://doi.org/10.1038/ncb2744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing