Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bi-directional interconversion of brite and white adipocytes

Abstract

Brown adipose tissue helps to maintain body temperature in hibernators, rodents and neonatal mammals by converting lipids and glucose into heat, thereby increasing energy expenditure. In addition to classical brown adipocytes, adult rodents—like adult humans—harbour brown-like adipocytes in the predominantly white adipose tissue. The formation of these brite (brown-in-white) adipocytes is a physiological response to chronic cold and their cellular origin is under debate. We show here that cold-induced formation of brite adipocytes in mice is reversed within 5 weeks of warm adaptation, but the brite adipocytes formed by cold stimulation are not eliminated. Genetic tracing and transcriptional characterization of isolated adipocytes demonstrates that they are converted into cells with the morphology and gene expression pattern of white adipocytes. Moreover, these white-typical adipocytes can convert into brite adipocytes on additional cold stimulation. Shifting the balance of this interconversion from the white towards the brite phenotype might provide a new means of counteracting obesity by increasing energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Britening of inguinal adipose tissue during a 1-week cold stimulation at 8 °C is reversible within 5 weeks at 23 °C.
Figure 2: Transgenic mouse lines for transient and permanent labelling of brite and classical brown adipocytes proved that former brite adipocytes retain an adipocyte phenotype during whitening.
Figure 3: Brite adipocyte gene expression switches to a typical white gene expression during whitening.
Figure 4: White-adipocyte-typical transcripts were selected from a microarray study and confirmed by qPCR.
Figure 5: Former brite adipocytes but not classical brown adipocytes switch to a white-adipocyte-typical gene expression profile during whitening.
Figure 6: Brite adipocytes can form from white adipocytes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Lin, C. S. & Klingenberg, M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 113, 299–303 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Cannon, B., Hedin, A. & Nedergaard, J. Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett. 150, 129–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Attie, A. D. & Scherer, P. E. Adipocyte metabolism and obesity. J. Lipid Res. 50 (Suppl), S395–S399 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. MacDougald, O. A., Hwang, C. S., Fan, H. & Lane, M. D. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc. Natl Acad. Sci. USA 92, 9034–9037 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Dawkins, M. J. & Scopes, J. W. Non-shivering thermogenesis and brown adipose tissue in the human new-born infant. Nature 206, 201–202 (1965).

    Article  CAS  PubMed  Google Scholar 

  9. Lean, M. E., James, W. P., Jennings, G. & Trayhurn, P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin. Sci. (Lond) 71, 291–297 (1986).

    Article  CAS  Google Scholar 

  10. Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Huttunen, P., Hirvonen, J. & Kinnula, V. The occurrence of brown adipose tissue in outdoor workers. Eur. J. Appl. Physiol. Occup. Physiol. 46, 339–345 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Garruti, G. & Ricquier, D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obes. Relat. Metab. Disord. 16, 383–390 (1992).

    CAS  PubMed  Google Scholar 

  13. Kortelainen, M. L., Pelletier, G., Ricquier, D. & Bukowiecki, L. J. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J. Histochem. Cytochem. 41, 759–764 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Hany, T. F. et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29, 1393–1398 (2002).

    Article  PubMed  Google Scholar 

  15. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. New Eng. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. New Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  21. Young, P., Arch, J. R. & Ashwell, M. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 167, 10–14 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Petrovic, N. et al. Chronic PPAR{γ} activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classical brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lazar, M. A. Developmental biology. How now, brown fat? Science 321, 1048–1049 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loncar, D. Convertible adipose tissue in mice. Cell Tissue Res. 266, 149–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Walden, T. B., Hansen, I. R., Timmons, J. A., Cannon, B. & Nedergaard, J. Recruited vs. nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Cinti, S. Transdifferentiation properties of adipocytes in the Adipose Organ. Am. J. Physiol. Endocrinol. Metab. 297, E977–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Cinti, S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest. 25, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Perwitz, N. et al. Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes. Diabetes Obes. Metab. 12, 158–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Virtanen, K. A. & Nuutila, P. Brown adipose tissue in humans. Curr. Opin. Lipidol. 22, 49–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasisin mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra-bright red fluorescent protein in ‘knock-in’ Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Nobusue, H., Endo, T. & Kano, K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res. 332, 435–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanchez-Gurmaches, J. et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jimenez, M. et al. β3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur. J. Biochem. 270, 699–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moulin, K. et al. Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochem. J. 356, 659–664 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rothwell, N. J. & Stock, M. J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin. Sci. (Lond) 64, 19–23 (1983).

    Article  CAS  Google Scholar 

  55. Astrup, A., Bulow, J., Madsen, J. & Christensen, N. J. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am. J. Physiol. 248, E507–E515 (1985).

    CAS  PubMed  Google Scholar 

  56. Johansson, T. et al. Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis 48, 264–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Rulicke, T. Pronuclear microinjection of mouse zygotes. Methods Mol. Biol. 254, 165–194 (2004).

    PubMed  Google Scholar 

  58. Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler: free,versatile software for automated biological image analysis. Biotechniques 42, 71–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Meissburger, B., Stachorski, L., Roder, E., Rudofsky, G. & Wolfrum, C. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54, 1468–1479 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.R. was supported by a Boehringer Ingelheim Fonds PhD Fellowship. This study received financial support from the Austrian Genome Research Programme GEN-AU II and III (T.R.), the ERC, the SNF and FP7 DIABAT (C.W.).

We thank Cornelius Fischer (Flow Cytometry Facility, UNIZH) for providing FACS sortings, E. Weber for cryosectioning and M. Stoffel, M. Kopf and N. Beaton for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.R. and C.W. designed the study and wrote the paper, M.R. performed most of the experiments, A.P. established and performed adipocyte sortings, and T.R. provided oocyte injections for transgenic animals.

Corresponding author

Correspondence to Christian Wolfrum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1100 kb)

Supplementary Table 1

Supplementary Information (XLS 45 kb)

Supplementary Table 2

Supplementary Information (XLS 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenwald, M., Perdikari, A., Rülicke, T. et al. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15, 659–667 (2013). https://doi.org/10.1038/ncb2740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing