Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of metastatic progression by microRNA regulatory networks

Subjects

Abstract

Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, whereas others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metastasis suppression by divergent miRNA regulatory networks.
Figure 2: Examples of miRNA regulatory networks that promote metastasis.
Figure 3: Cell-intrinsic versus cell-extrinsic control of metastatic progression by miRNAs.

References

  1. Talmadge, J. E. & Fidler, I. J. AACR Centennial Series: The biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bushati, N. & Cohen, S. M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ul Hussain, M. Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res. 349, 405–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 17, 411–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Duursma, A. M., Kedde, M., Schrier, M., le Sage, C. & Agami, R. miR-148 targets human DNMT3b protein coding region. RNA 14, 872–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forman, J. J., Legesse-Miller, A. & Coller, H. A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl Acad. Sci. USA 105, 14879–14884 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Forman, J. J. & Coller, H. A. The code within the code: microRNAs target coding regions. Cell Cycle 9, 1533–1541 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Garzon, R., Calin, G. A. & Croce, C. M. MicroRNAs in Cancer. Annu. Rev. Med. 60, 167–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michael, M. Z., O' Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003).

    CAS  PubMed  Google Scholar 

  33. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Farazi, T. A. et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 71, 4443–4453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA 102, 3627–3632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Tagawa, H. & Seto, M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19, 2013–2016 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Mu, P. et al. Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ciafrè, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334, 1351–1358 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Murakami, Y. et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–2545 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ozen, M., Creighton, C. J., Ozdemir, M. & Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Yan, M. et al. Dysregulated expression of dicer and drosha in breast cancer. Pathol. Oncol. Res. 18, 343–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Png, K. J. et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 25, 226–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, F., Zheng, Z., Guo, J. & Ding, X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 119, 586–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Hafez, M. M. et al. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac. J. Cancer Prev. 13, 591–598 (2012).

    Article  PubMed  Google Scholar 

  62. Schmitz, K. J. et al. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J. Clin. Pathol. 64, 529–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Dohi, O. et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int. J. Oncol. 42, 411–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. White, N. M. et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J. Urol. 186, 1077–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Missiaglia, E. et al. MicroRNA-206 expression levels correlate with clinical behaviour of rhabdomyosarcomas. Br. J. Cancer 102, 1769–1777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donnem, T. et al. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer 117, 3193–3200 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Y. et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31, 1398–1407 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Heyn, H. et al. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int. J. Cancer 129, 2797–2806 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Taulli, R. et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J. Clin. Invest. 119, 2366–2378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamada, S. et al. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res 10, 3–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Feng, R. et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 298, 50–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, B., Peng, X. C., Zheng, X. L., Wang, J. & Qin, Y. W. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66, 169–175 (2009).

    Article  PubMed  Google Scholar 

  73. Png, K. J., Halberg, N., Yoshida, M. & Tavazoie, S. F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2012).

    Article  CAS  Google Scholar 

  74. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O'Connell, J. T. et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl Acad. Sci. USA 108, 16002–16007 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang, J. et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 72, 4597–4608 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valastyan, S., Benaich, N., Chang, A., Reinhardt, F. & Weinberg, R. A. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 23, 2592–2597 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 70, 5147–5154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wszolek, M. F. et al. A microRNA expression profile defining the invasive bladder tumor phenotype. Urol. Oncol. 29, 794–801 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Schaefer, A. et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126, 1166–1176 (2010).

    CAS  PubMed  Google Scholar 

  82. Creighton, C. J. et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 70, 1906–1915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y. et al. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med. Oncol. 27, 685–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Hakem, A. et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 19, 1974–1979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gibbons, D. L. et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23, 2140–2151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat. Med. 18, 1511–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, S., Si, M. L., Wu, H. & Mo, Y. Y. MicroRNA-21 targets the tumour suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Zhu, S. et al. MicroRNA-21 targets tumour suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Asangani, I. A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Bornachea, O. et al. EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Sci. Rep. 2, 434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Segura, M. F. et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl Acad. Sci. USA 106, 1814–1819 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gaziel-Sovran, A. et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 20, 104–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pencheva, N. et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068–1082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, F. et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Dangi-Garimella, S. et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28, 347–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yun, J. et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J. 30, 4500–4514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Garner, K. et al. Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) binds and transfers phosphatidic acid. J. Biol. Chem. 287, 32263–32276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, Y. et al. miR-126 and miR-126(*) repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat. Cell Biol. 15, 284–294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu, N. et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol. Cell Biochem. 351, 157–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Sasahira, T. et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer 107, 700–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chou, J. et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat. Cell Biol. 15, 201–213 (2012).

    Article  CAS  Google Scholar 

  111. Ru, P. et al. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther. 11, 1166–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Fang, J. H. et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54, 1729–1740 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Zhuang, G. et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK–STAT pathway. EMBO J. 31, 3513–3523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Siemens, H. et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Grelier, G. et al. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br. J. Cancer 101, 673–683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miyazaki, Y. et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat. Med. 18, 1136–1141 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Elmén, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Gregory, P. A. et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol. Biol. Cell 22, 1686–1698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17, 211–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, S. et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene (2012).

  130. Wong, C. C. et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 140, 322–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Penna, E. et al. MicroRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 30, 1990–2007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, X. et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 9, 824–833 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, X., Liu, S., Hu, T., He, Y. & Sun, S. Up-regulated microRNA-143 transcribed by nuclear factor B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50, 490–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Zou, Z. et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263, 526–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Dorrello, N. V. et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Latha, K., Zhang, W., Cella, N., Shi, H. Y. & Zhang, M. Maspin mediates increased tumor cell apoptosis upon induction of the mitochondrial permeability transition. Mol. Cell Biol. 25, 1737–1748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for insightful discussions. We thank C. Buss for artistic assistance in figure design. N.P. is an Anderson Cancer Center graduate fellow. S.F.T. was supported by a DOD Era of Hope Scholar Award, an NIH New Innovator Award, the Rita Allen Foundation and additional grant support. We apologize to colleagues whose important work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail F. Tavazoie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pencheva, N., Tavazoie, S. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15, 546–554 (2013). https://doi.org/10.1038/ncb2769

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2769

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer