Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6

Abstract

Autophagy is important in the basal or stress-induced clearance of bulk cytosol, damaged organelles, pathogens and selected proteins by specific vesicles, the autophagosomes. Following mTOR (mammalian target of rapamycin) inhibition, autophagosome formation is primed by the ULK1 and the beclin-1–Vps34–AMBRA1 complexes, which are linked together by a scaffold platform, the exocyst. Although several regulative steps have been described along this pathway, few targets of mTOR are known, and the cross-talk between ULK1 and beclin 1 complexes is still not fully understood. We show that under non-autophagic conditions, mTOR inhibits AMBRA1 by phosphorylation, whereas on autophagy induction, AMBRA1 is dephosphorylated. In this condition, AMBRA1, interacting with the E3-ligase TRAF6, supports ULK1 ubiquitylation by LYS-63-linked chains, and its subsequent stabilization, self-association and function. As ULK1 has been shown to activate AMBRA1 by phosphorylation, the proposed pathway may act as a positive regulation loop, which may be targeted in human disorders linked to impaired autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AMBRA1 interacts with the kinase ULK1 in mammalian cells.
Figure 2: AMBRA1 is important for ULK1 stability and kinase activity.
Figure 3: AMBRA1 is also important for ULK1 Lys-63-linked ubiquitylation.
Figure 4: AMBRA1 regulates ULK1 ubiquitylation by forming a complex with the TRAF6 ubiquitin ligase.
Figure 5: AMBRA1–TRAF6 interaction is necessary for ULK1 Lys-63-linked ubiquitylation.
Figure 6: ULK1 Lys-63-linked ubiquitylation is necessary for ULK1 self-association.
Figure 7: mTOR phosphorylates AMBRA1 at Ser 52, inhibiting its role in ULK1 modification.
Figure 8: Proposed model of AMBRA1 regulation in ULK1 ubiquitylation.

Similar content being viewed by others

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2012).

    Article  Google Scholar 

  2. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell. 20, 1981–1991 (2009).

    Article  CAS  Google Scholar 

  3. Chan, E. Y., Longatti, A., McKnight, N. C. & Tooze, S. A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Biol. Cell. 29, 157–171 (2009).

    Article  CAS  Google Scholar 

  4. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  Google Scholar 

  5. Hara, T. et al. FIP200, an ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  CAS  Google Scholar 

  6. Hokosawa, N. et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973–979 (2009).

    Article  Google Scholar 

  7. Ganley, I. G. et al. ULK1–ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  CAS  Google Scholar 

  8. Mercer, C. A., Kaliappan, A. & Dennis, P. B. A novel, human Atg13 binding protein, Atg101, interacts with Ulk1 and is essential for macroautophagy. Autophagy 5, 649–662 (2009).

    Article  CAS  Google Scholar 

  9. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    Article  CAS  Google Scholar 

  10. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  Google Scholar 

  11. Di Bartolomeo, S. et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191, 155–168 (2010).

    Article  CAS  Google Scholar 

  12. Chan, E. Y., Kir, S. & Tooze, S. A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282, 25464–25474 (2007).

    Article  CAS  Google Scholar 

  13. Chen, Z. J. & Sun, L. J. Non proteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    Article  CAS  Google Scholar 

  14. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    Article  CAS  Google Scholar 

  15. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–445 (2009).

    Article  CAS  Google Scholar 

  16. Zhou, X. et al. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl Acad. Sci. USA 104, 5842–5847 (2007).

    Article  CAS  Google Scholar 

  17. Shi, C. S. & Kehrl, J. H. Traf6 and A20 differentially regulate TLR4-induced autophagy by affecting the ubiquitination of Beclin 1. Sci. Signal 3, 123 (2010).

    Google Scholar 

  18. Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    Article  CAS  Google Scholar 

  19. Liu, Z., Zhang, W. P., Xing, Q., Ren, X., Liu, M. & Tang, C. Noncovalent dimerization of ubiquitin. Angew. Chem. Int. Ed. Engl. 51, 469–472 (2012).

    Article  CAS  Google Scholar 

  20. Humphrey, R. K., Yu, S. M., Bellary, A., Gonuguntla, S., Yebra, M. & Jhala, U. S. Lysine 63-linked ubiquitination modulates mixed lineage kinase-3 interaction with JIP1 scaffold protein in cytokine-induced pancreatic β cell death. J. Biol. Chem. 288, 2428–2440 (2012).

    Article  Google Scholar 

  21. Yeh, Y. Y., Shah, K. H. & Herman, P. K. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy. J. Biol. Chem. 286, 28931–28939 (2011).

    Article  CAS  Google Scholar 

  22. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  Google Scholar 

  23. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  Google Scholar 

  24. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  Google Scholar 

  25. Itakura, E. & Mizushima, N. Characterization of autophagosome formation siteby a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    Article  CAS  Google Scholar 

  26. Bodemann, B. O. et al. RalB and the exocyst mediate the cellular starvationresponse by direct activation of autophagosome assembly. Cell 144, 253–267 (2011).

    Article  CAS  Google Scholar 

  27. Hosking, R. mTOR: the master regulator. Cell 149, 955–957 (2012).

    Article  Google Scholar 

  28. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 253–267 (2005).

    Article  Google Scholar 

  29. Sorrentino, A. et al. The type I TGF- β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199–1207 (2008).

    Article  CAS  Google Scholar 

  30. Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    Article  CAS  Google Scholar 

  31. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  Google Scholar 

  32. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    Article  CAS  Google Scholar 

  33. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  34. Tomoda, T., Bhatt, R. S., Kuroyanagi, H., Shirasawa, T. & Hatten, M. E. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 24, 833–846 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Animal Facility (STA) of the University of Rome ‘Tor Vergata’ for the mouse work, M. Acuña Villa and M. W. Bennett for editorial and secretarial work, and G. Basile and M. Corrado for research assistance. We are indebted to S. A. Tooze (Cancer Research Institute London, UK), D. H. Kim (University of Minnesota Cancer Center, USA), and D. M. Sabatini and R. Zoncu (Whitehead Institute for Biomedical Research, USA) for kindly providing us with ULK1 and ATG13 constructs and HEK293 cells stably expressing RAPTOR–FLAG, respectively. This work was supported in part by grants from the Telethon Foundation (GGP10225), AIRC (IG2010 and IG2012 to FC and MP), FISM (2009), the Italian Ministry of University and Research (PRIN 2009 and FIRB Accordi di Programma 2011) and the Italian Ministry of Health (Ricerca Finalizzata and Ricerca Corrente to F.C., M.P. and G.M.F.).

Author information

Authors and Affiliations

Authors

Contributions

F.N. performed most experiments with crucial help from F.S. (immunofluorescence and confocal analyses), M.A. (mutagenesis and cloning), V.C. (immunoprecipitation analysis), M.B. (real-time PCR) and P.B. (kinase assay in vitro). C.G. and J.D. performed the mass spectrometry analysis; G.M.F. provided critical reagents. F.N. and F.C. wrote the manuscript with the help and suggestions of G.M.F. and M.P.; F.C. conceived and designed the research. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Francesco Cecconi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2635 kb)

Supplementary Table 1

Supplementary Information (XLS 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazio, F., Strappazzon, F., Antonioli, M. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15, 406–416 (2013). https://doi.org/10.1038/ncb2708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing