Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo

Abstract

Once programmed to acquire a specific identity and function, cells rarely change in vivo1. Neurons of the mammalian central nervous system (CNS) in particular are a classic example of a stable, terminally differentiated cell type. With the exception of the adult neurogenic niches, where a limited set of neuronal subtypes continue to be generated throughout life2,3, CNS neurons are born only during embryonic and early postnatal development. Once generated, neurons become permanently post-mitotic and do not change their identity for the lifespan of the organism. Here, we have investigated whether excitatory neurons of the neocortex can be instructed to directly reprogram their identity post-mitotically from one subtype into another, in vivo. We show that embryonic and early postnatal callosal projection neurons of layer II/III can be post-mitotically lineage reprogrammed into layer-V/VI corticofugal projection neurons following expression of the transcription factor encoded by Fezf2. Reprogrammed callosal neurons acquire molecular properties of corticofugal projection neurons and change their axonal connectivity from interhemispheric, intracortical projections to corticofugal projections directed below the cortex. The data indicate that during a window of post-mitotic development neurons can change their identity, acquiring critical features of alternative neuronal lineages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Fezf2 in migratory, post-mitotic CPNs induces them to acquire molecular features of CFuPNs.
Figure 2: Fezf2 expression in post-mitotic CPNs induces a program of CFuPN-specific genes.
Figure 3: Reprogrammed CPNs maintain stable expression of CFuPN markers.
Figure 4: Callosal projection neurons can undergo molecular reprogramming of subtype-specific genes in response to Fezf2 expression at P3.
Figure 5: CPNs can reprogram their axonal projections from callosal to corticofugal targets in response to Fezf2.

Similar content being viewed by others

References

  1. Waddington, C. H. The Strategy of the Genes; A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, 1957).

    Google Scholar 

  2. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  Google Scholar 

  3. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  Google Scholar 

  4. Selvaraj, V., Plane, J. M., Williams, A. J. & Deng, W. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol. 28, 214–223 (2010).

    Article  CAS  Google Scholar 

  5. Vierbuchen, T. & Wernig, M. Direct lineage conversions: unnatural but useful? Nat. Biotechnol. 29, 892–907 (2011).

    Article  CAS  Google Scholar 

  6. Zhou, Q. & Melton, D. A. Extreme makeover: converting one cell into another. Cell Stem. Cell 3, 382–388 (2008).

    Article  CAS  Google Scholar 

  7. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  Google Scholar 

  8. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    Article  CAS  Google Scholar 

  9. De Marco Garcia, N. V. & Jessell, T. M. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 57, 217–231 (2008).

    Article  CAS  Google Scholar 

  10. Sharma, K., Leonard, A. E., Lettieri, K. & Pfaff, S. L. Genetic andepigenetic mechanisms contribute to motor neuron pathfinding. Nature 406, 515–519 (2000).

    Article  CAS  Google Scholar 

  11. Thaler, J. P. et al. A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41, 337–350 (2004).

    Article  CAS  Google Scholar 

  12. Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  13. Bayer, S. A. & Altman, J. Neocortical Development (Raven Press, 1991).

    Google Scholar 

  14. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  15. Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005).

    Article  CAS  Google Scholar 

  16. Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005).

    Article  CAS  Google Scholar 

  17. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    Article  CAS  Google Scholar 

  18. Rouaux, C. & Arlotta, P. Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat. Neurosci. 13, 1345–1347 (2010).

    Article  CAS  Google Scholar 

  19. Wang, X., Qiu, R., Tsark, W. & Lu, Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res. 85, 3567–3573 (2007).

    Article  CAS  Google Scholar 

  20. Delalle, I., Bhide, P. G., Caviness, V. S. Jr & Tsai, L. H. Temporal and spatial patterns of expression of p35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J. Neurocytol. 26, 283–296 (1997).

    Article  CAS  Google Scholar 

  21. Tsai, L. H., Delalle, I., Caviness, V. S. Jr, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  Google Scholar 

  22. Yoneshima, H. et al. Er81 is expressed in a subpopulation of layer 5 neurons in rodent and primate neocortices. Neuroscience 137, 401–412 (2006).

    Article  CAS  Google Scholar 

  23. Molyneaux, B. J. et al. Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J. Neurosci. 29, 12343–12354 (2009).

    Article  CAS  Google Scholar 

  24. Fishell, G. & Hanashima, C. Pyramidal neurons grow up and change their mind. Neuron 57, 333–338 (2008).

    Article  CAS  Google Scholar 

  25. Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl Acad. Sci. USA 104, 1027–1032 (2007).

    Article  CAS  Google Scholar 

  26. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  27. Fame, R. M., MacDonald, J. L. & Macklis, J. D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 34, 41–50 (2011).

    Article  CAS  Google Scholar 

  28. Ozaki, H. S. & Wahlsten, D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J. Compit. Neurol. 400, 197–206 (1998).

    Article  CAS  Google Scholar 

  29. Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    Article  CAS  Google Scholar 

  30. Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  Google Scholar 

  31. Matsuo, N., Kawamoto, S., Matsubara, K. & Okubo, K. Cloning and developmental expression of the murine homolog of doublecortin. Biochem. Biophys. Res. Commun. 252, 571–576 (1998).

    Article  CAS  Google Scholar 

  32. Rouaux, C., Bhai, S. & Arlotta, P. Programming and reprogramming neuronal subtypes in the central nervous system. Dev. Neurobiol. 72, 1085–1098 (2012).

    Article  Google Scholar 

  33. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    Article  CAS  Google Scholar 

  34. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, 1–29 (2010).

    Article  Google Scholar 

  35. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    Article  CAS  Google Scholar 

  36. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem. Cell 11, 471–476 (2012).

    Article  CAS  Google Scholar 

  37. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  38. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  39. Lodato, S. et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69, 763–779 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Melton, A. McMahon, J. Macklis, B. Molyneaux and E. Stronge for their advice and comments on the manuscript; C. Cepko (Harvard Medical School, USA), S. Arber (University of Basel, Switzerland), F. Zhang (MIT, USA) and Q. Lu (Beckman Research Institute, USA) for sharing of antibodies and expression vectors; M. M. Radji for help with data analysis; A. Merlino and Z. Trayes-Gibson for technical support; and C. Mare for schematic drawings. This work was supported by the US National Institute of Health (NS062849), the Spastic Paraplegia Foundation and the Harvard Stem Cell Institute to P.A.; C.R. was partially supported by a Milton-Safenowitz postdoctoral fellowship from the ALS Association.

Author information

Authors and Affiliations

Authors

Contributions

P.A. and C.R conceived the experiments and wrote the manuscript. P.A. supervised the project and C.R. executed all the experiments.

Corresponding authors

Correspondence to Caroline Rouaux or Paola Arlotta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouaux, C., Arlotta, P. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 15, 214–221 (2013). https://doi.org/10.1038/ncb2660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing