Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium

Abstract

The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of β1 integrins or ILK disrupts acinar morphogenesis.
Figure 2: Luminal filling is not due to a lack of apoptosis.
Figure 3: Apical polarity is inverted in β1 integrin and ILK-KO acini.
Figure 4: β1 integrins and ILK control internal Golgi polarity.
Figure 5: β1 integrins and ILK control polarity and lumens through polarization of microtubules.
Figure 6: Dynamic microtubules are required for apical relocation of aPKC and lumen formation.
Figure 7: β1 integrins orient polarity through an endocytic mechanism.
Figure 8: β1 integrin signalling specifies the orientation and maintenance of epithelial polarity and the formation of lumens.

Similar content being viewed by others

References

  1. Carmosino, M., Valenti, G., Caplan, M. & Svelto, M. Polarized traffic towards the cell surface: how to find the route. Biol. Cell 102, 75–91 (2009).

    Article  PubMed  Google Scholar 

  2. Assemat, E., Bazellieres, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochim. Biophys. Acta 1778, 614–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Musch, A. Microtubule organization and function in epithelial cells. Traffic 5, 1–9 (2004).

    Article  PubMed  Google Scholar 

  4. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ojakian, G. K. & Schwimmer, R. Regulation of epithelial cell surface polarity reversal by β1 integrins. J. Cell Sci. 107, 561–576 (1994).

    CAS  PubMed  Google Scholar 

  6. Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell–cell and cell–substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 137–151 (1990).

    PubMed  Google Scholar 

  7. Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 153–165 (1990).

    PubMed  Google Scholar 

  8. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Streuli, C. H. & Akhtar, N. Signal co-operation between integrins and other receptor systems. Biochem. J. 418, 491–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Zovein, A. C. et al. β1 integrin establishes endothelial cell polarity andarteriolar lumen formation via a Par3-dependent mechanism. Dev. Cell 18, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naylor, M. J. et al. Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J. Cell Biol. 171, 717–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat. Cell Biol. 3, 831–838 (2001).

    Article  PubMed  Google Scholar 

  15. Cohen, D., Fernandez, D., Lazaro-Dieguez, F. & Musch, A. The serine/threonine kinase Par1b regulates epithelial lumen polarity via IRSp53-mediated cell–ECM signaling. J. Cell Biol. 192, 525–540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeanes, A. I. et al. Specific β-containing integrins exert differential control on proliferation and two-dimensional collective cell migration in mammary epithelial cells. J. Biol. Chem. 287, 24103–24112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akhtar, N. et al. Molecular dissection of integrin signalling proteins in the control of mammary epithelial development and differentiation. Development 136, 1019–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell Biol. 183, 625–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jechlinger, M., Podsypanina, K. & Varmus, H. Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev. 23, 1677–1688 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol. 189, 661–669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pearson, J. F., Hughes, S., Chambers, K. & Lang, S. H. Polarized fluid movement and not cell death, creates luminal spaces in adult prostate epithelium. Cell Death Differ. 16, 475–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J. 19, 3990–4003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin-Belmonte, F. & Mostov, K. Regulation of cell polarity during epithelial morphogenesis. Curr. Opin. Cell Biol. 20, 227–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Klinowska, T. C. et al. Epithelial development and differentiation in the mammary gland is not dependent on α3 or α6 integrin subunits. Dev. Biol. 233, 449–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Yadav, S., Puri, S. & Linstedt, A. D. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol. Biol. Cell 20, 1728–1736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nat. Cell Biol. 4, E236–E242 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Humphries, J. D. et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci. Signal. 2, ra51 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fielding, A. B., Dobreva, I., McDonald, P. C., Foster, L. J. & Dedhar, S. Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. J. Cell Biol. 180, 681–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wickstrom, S. A. et al. Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev. Cell 19, 574–588 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jaulin, F. & Kreitzer, G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J. Cell Biol. 190, 443–460.

  32. Bacallao, R. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817–2832 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Bre, M. H. et al. Regulation of microtubule dynamics and nucleation during polarization in MDCK II cells. J. Cell Biol. 111, 3013–3021 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol. 189, 111–126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stamatovic, S. M., Keep, R. F., Wang, M. M., Jankovic, I. & Andjelkovic, A. V. Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J. Biol. Chem. 284, 19053–19066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, R. D. et al. Inhibition of caveolar uptake, SV40 infection, and β1-integrin signaling by a nonnatural glycosphingolipid stereoisomer. J. Cell Biol. 176, 895–901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walmsley, M. J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Pullan, S. et al. Requirement of basement membrane for the suppressionof programmed cell death in mammary epithelium. J. Cell Sci. 109, 631–642 (1996).

    CAS  PubMed  Google Scholar 

  43. Streuli, C. H. et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129, 591–603 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Akhtar, N. & Streuli, C. H. Rac1 links integrin-mediated adhesion to the controlof lactational differentiation in mammary epithelia. J. Cell Biol. 173, 781–793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ceresa, B. P., Lotscher, M. & Schmid, S. L. Receptor and membrane recycling can occur with unaltered efficiency despite dramatic Rab5(q79l)-induced changes in endosome geometry. J. Biol. Chem. 276, 9649–9654 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Komarova, Y. et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol. Biol. Cell 16, 5334–5345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, P., Ballestrem, C. & Streuli, C. H. The C terminus of talin links integrins to cell cycle progression. J. Cell Biol. 195, 499–513.

  49. Payne, C. M. & Satterfield, V. F. A simple procedure for the preparation of rosetted cells for electron microscopy. J. Clin. Pathol. 33, 505–508 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valentijn, A. J., Metcalfe, A. D., Kott, J., Streuli, C. H. & Gilmore, A. P. Spatial and temporal changes in Bax subcellular localization during anoikis. J. Cell Biol. 162, 599–612 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishimura, N. & Sasaki, T. Cell-surface biotinylation to study endocytosis and recycling of occludin. Methods Mol. Biol. 440, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Jones for doing the electron microscopy, S. Schmid (Scripps Research Institute, La Jolla, USA) and B. Ceresa (University of Louisville, USA) for dynamin and Rab5a adenoviruses, C. Wu (University of Pittsburgh, USA) for anti-ILK monoclonal, M. Lowe (University of Manchester, UK) for GM130 polyclonal and P. March for confocal microscope training. The FLS Bioimaging Facility microscopes were purchased with grants from the BBSRC, Wellcome and the University of Manchester Strategic Fund. Thanks to P. Caswell, T. Hardingham, M. Humphries, M. Lowe, N. Papalopulu and P. Lu and for critical appraisal of the manuscript. This work was supported by the Wellcome Trust (no. 081203/Z/06/Z). The Wellcome Trust Centre for Cell-Matrix Research is supported by core funding from the Wellcome Trust (no. 088785/Z/09/Z).

Author information

Authors and Affiliations

Authors

Contributions

N.A. conceived ideas, performed experiments, analysed and interpreted the data and wrote the manuscript. C.H.S. conceived ideas and wrote the manuscript.

Corresponding authors

Correspondence to Nasreen Akhtar or Charles H. Streuli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1519 kb)

Supplementary Table 1

Supplementary Information (XLS 30 kb)

Wildtype MEC acinar on BMM rendered in 3D.

A third was removed to show an apical lumen (aPKC; red) and basolateral surface (β1 integrin; green). (MOV 11467 kb)

β1 integrin deleted MEC acinar on BMM rendered in 3D

A third was removed to show filled lumen. Note apical polarity (aPKC; red) inversion to outer membrane and a loss of β1 integrin (green). (MOV 9060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, N., Streuli, C. An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 15, 17–27 (2013). https://doi.org/10.1038/ncb2646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing