Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast

Abstract

Activation of mitosis-promoting factor (MPF) drives mitotic commitment1. In human cells active MPF appears first on centrosomes2. We show that local activation of MPF on the equivalent organelle of fission yeast, the spindle pole body (SPB), promotes Polo kinase activity at the SPBs long before global MPF activation drives mitotic commitment. Artificially promoting MPF or Polo activity at various locations revealed that this local control of Plo1 activity on G2 phase SPBs dictates the timing of mitotic commitment. Cytokinesis of the rod-shaped fission yeast cell generates a naive, new, cell end. Growth is restricted to the experienced old end until a point in G2 phase called new end take off (NETO) when bipolar growth is triggered3. NETO coincided with MPF activation of Plo1 on G2 phase SPBs (ref. 4). Both MPF and Polo activities were required for NETO and both induced NETO when ectopically activated at interphase SPBs. NETO promotion by MPF required polo. Thus, local MPF activation on G2 SPBs directs polo kinase to control at least two distinct and temporally separated, cell-cycle transitions at remote locations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MPF activity controls Plo1.GFP recruitment to the SPB in late G2 phase.
Figure 2: Ectopic activation of either Plo1 or MPF on G2 SPBs promotes mitotic commitment.
Figure 3: NETO is triggered by Plo1 activation/recruitment on the G2 SPB.
Figure 4: MPF activation on the SPB triggers NETO in a Plo1-dependent manner.
Figure 5: Model of feedback loop activation on the SPB and its subsequent propagation throughout the cell to promote mitotic commitment.

Similar content being viewed by others

References

  1. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–508 (1990).

    Article  CAS  Google Scholar 

  2. Jackman, M., Lindon, C., Nigg, E. A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat. Cell Biol. 5, 143–148 (2003).

    Article  CAS  Google Scholar 

  3. Mitchison, J. M. & Nurse, P. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75, 357–376 (1985).

    CAS  PubMed  Google Scholar 

  4. Mulvihill, D. P., Petersen, J., Ohkura, H., Glover, D. M. & Hagan, I. M. Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol. Biol. Cell 10, 2771–2785 (1999).

    Article  CAS  Google Scholar 

  5. Hudson, J. D., Feilotter, H. & Young, P. G. stf1 : non wee mutations epistatic to cdc25 in the fission yeast Schizosaccharomyces pombe. Genetics 126, 309–315 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bridge, A. J., Morphew, M., Bartlett, R. & Hagan, I. M. The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev. 12, 927–942 (1998).

    Article  CAS  Google Scholar 

  7. Tallada, V. A., Bridge, A. J., Emery, P. E. & Hagan, I. M. Suppression of the S. pombe cut12.1 cell cycle defect by mutations in cdc25 and genes involved in transcriptional and translational control. Genetics 176, 73–83 (2007).

    Article  CAS  Google Scholar 

  8. MacIver, F. H., Tanaka, K., Robertson, A. M. & Hagan, I. M. Physical and functional interactions between polo kinase and the spindle pole component Cut12 regulate mitotic commitment in S. pombe. Genes Dev. 17, 1507–1523 (2003).

    Article  CAS  Google Scholar 

  9. Tanaka, K. et al. The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J. 20, 1259–1270 (2001).

    Article  CAS  Google Scholar 

  10. Bähler, J. et al. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143, 1603–1616 (1998).

    Article  Google Scholar 

  11. Dischinger, S., Krapp, A., Xie, L., Paulson, J. R. & Simanis, V. Chemical genetic analysis of the regulatory role of Cdc2p in the S. pombe septation initiation network. J. Cell Sci. 121, 843–853 (2008).

    Article  CAS  Google Scholar 

  12. May, J. & Mitchison, J. M. Length growth in fission yeast cells measured by two novel techniques. Nature 322, 752–754 (1986).

    Article  Google Scholar 

  13. Zhang, C. et al. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat. Methods 2, 435–441 (2005).

    Article  CAS  Google Scholar 

  14. Ohkura, H., Hagan, I. M. & Glover, D. M. The conserved Schizosaccharomyces pombe kinase Plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9, 1059–1073 (1995).

    Article  CAS  Google Scholar 

  15. Kothe, M. et al. Structure of the catalytic domain of human polo-like kinase 1. Biochemistry 46, 5960–5971 (2007).

    Article  CAS  Google Scholar 

  16. May, K. M., Reynolds, N., Cullen, F., Yanagida, M. & Ohkura, H. Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast. J. Cell Biol. 156, 23–28 (2002).

    Article  CAS  Google Scholar 

  17. Archambault, V. & Glover, D. M. Polo-like kinases: conservation anddivergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  Google Scholar 

  18. Elia, A. E., Cantley, L. C. & Yaffe, M. B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–231 (2003).

    Article  CAS  Google Scholar 

  19. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  Google Scholar 

  20. Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell Prot.: MCP 7, 282–289 (2008).

    Article  CAS  Google Scholar 

  21. Bertazzi, D. T., Kurtulmus, B. & Pereira, G. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J. Cell Biol. 193, 1033–1048 (2011).

    Article  CAS  Google Scholar 

  22. Alfa, C. E., Ducommun, B., Beach, D. & Hyams, J. S. Distinct nuclear andspindle pole body populations of cyclin-cdc2 in fission yeast. Nature 347, 680–682 (1990).

    Article  CAS  Google Scholar 

  23. Decottingnies, A., Zarzov, P. & Nurse, P. In vivo localisation of fission yeast cyclin-dependent kinase cdc2p and cyclin B cdc13p during mitosis and meiosis. J. Cell Sci. 114, 2627–2640 (2001).

    Google Scholar 

  24. Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast Cdc2+ protein-kinase regulates entry into mitosis. Nature 342, 39–45 (1989).

    Article  CAS  Google Scholar 

  25. Petersen, J. & Nurse, P. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat. Cell Biol. 9, 1263–1272 (2007).

    Article  CAS  Google Scholar 

  26. Halova, L. & Petersen, J. Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo. J. Cell Sci. 124, 3441–3449 (2011).

    Article  CAS  Google Scholar 

  27. Petersen, J. & Hagan, I. M. Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature 435, 507–512 (2005).

    Article  CAS  Google Scholar 

  28. Hartmuth, S. & Petersen, J. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J. Cell Sci. 122, 1737–1746 (2009).

    Article  CAS  Google Scholar 

  29. Moseley, J. B., Mayeux, A., Paoletti, A. & Nurse, P. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459, 857–860 (2009).

    Article  CAS  Google Scholar 

  30. Martin, S. G. & Berthelot-Grosjean, M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459, 852–856 (2009).

    Article  CAS  Google Scholar 

  31. Das, M. et al. Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science 337, 239–243 (2012).

    Article  CAS  Google Scholar 

  32. Petersen, J. TOR signalling regulates mitotic commitment through stress-activated MAPK and Polo kinase in response to nutrient stress. Biochem. Soc. Trans. 37, 273–277 (2009).

    Article  CAS  Google Scholar 

  33. Simanis, V. Events at the end of mitosis in the budding and fission yeasts. J. Cell Sci. 116, 4263–4275 (2003).

    Article  CAS  Google Scholar 

  34. Moreno, S., Hayles, J. & Nurse, P. Regulation of p34cdc2 protein-kinase during mitosis. Cell 58, 361–372 (1989).

    Article  CAS  Google Scholar 

  35. Creanor, J. & Mitchison, J. M. Reduction of perturbations in leucine incorporation in synchronous cultures of Schizosaccharomyces pombe made by elutriation. J. Gen. Micro. 112, 385–388 (1979).

    Article  Google Scholar 

  36. Cipak, L. et al. Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast Schizosaccharomyces pombe. Cell Cycle 10, 3527–3532 (2011).

    Article  CAS  Google Scholar 

  37. Hagan, I. & Yanagida, M. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129, 1033–1047 (1995).

    Article  CAS  Google Scholar 

  38. Petersen, J., Paris, J., Willer, M., Philippe, M. & Hagan, I. M. The S. pombe aurora related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J. Cell Sci. 114, 4371–4384 (2001).

    CAS  PubMed  Google Scholar 

  39. Marks, J. & Hyams, J. S. Localization of F-actin through the cell-division cycle of Schizosaccharomyces pombe. E. J. Cell Biol. 39, 27–32 (1985).

    Google Scholar 

  40. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal-antibodies. J. Cell Sci. 93, 491–500 (1989).

    PubMed  Google Scholar 

  41. Davis, F. M., Tsao, T. Y., Fowler, S. K. & Rao, P. N. Monoclonal antibodies to mitotic cells. Proc. Natl Acad. Sci. USA 80, 2926–2930 (1983).

    Article  CAS  Google Scholar 

  42. Knutsen, J. H. et al. Cell-cycle analysis of fission yeast cells by flow cytometry. PloS ONE 6, e17175 (2011).

    Article  CAS  Google Scholar 

  43. Simanis, V. & Nurse, P. The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45, 261–268 (1986).

    Article  CAS  Google Scholar 

  44. MacIver, F. H., Glover, D. M. & Hagan, I. M. A ‘marker switch’ approach for targeted mutagenesis of genes in Schizosaccharomyces pombe. Yeast 20, 587–594 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Hodgson for technical assistance; V. Doye (Insitut Jacques Monod, Paris, France), D. Mulvihill (University of Kent, UK), U. Fleig (Düsseldorf, Germany) and D. Feret (Paterson Institute, UK) for strains; K. Gull (Oxford University, UK) and H. Ohkura (Edinburgh University, UK) for antibodies; D. Feret (Paterson Institute, UK), G. Pereira (DKFZ, Germany) and A. Carr (GDSC, Sussex, UK) for plasmids; and D. Bitton (Paterson Institute, UK) for discussions during the design of plo1.as8. This work was supported by Cancer Research UK (CRUK) grant number C147/A6058. V.S. and A.K. were supported by the Swiss National Science Foundation and EPFL.

Author information

Authors and Affiliations

Authors

Contributions

I.M.H. conceived the study. A.K. and V.S. generated cdc2.as. A.P. generated the conditional polo kinase alleles, including Plo1.RL. V.A.T. and K.Y.C. carried out the imaging work in Fig. 1. A.G. performed the remainder of the experiments with occasional assistance from A.P. and K.Y.C. for more complex experiments and cloning. I.M.H. wrote the manuscript with input and discussions from all authors.

Corresponding author

Correspondence to Iain M. Hagan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 556 kb)

Supplementary Table 1

Supplementary Information (XLSX 35 kb)

Supplementary Movie 1

Supplementary Information (MOV 719 kb)

Supplementary Movie 2

Supplementary Information (MOV 698 kb)

Supplementary Movie 3

Supplementary Information (MOV 3523 kb)

Supplementary Movie 4

Supplementary Information (MOV 9410 kb)

Supplementary Movie 5

Supplementary Information (MOV 5045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grallert, A., Patel, A., Tallada, V. et al. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat Cell Biol 15, 88–95 (2013). https://doi.org/10.1038/ncb2633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing