Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lineage conversion methodologies meet the reprogramming toolbox

Lineage conversion has recently attracted increasing attention as a potential alternative to the directed differentiation of pluripotent cells to obtain cells of a given lineage. Different means allowing for cell identity switch have been reported. Lineage conversion relied initially on the discovery of specific transcription factors generally enriched and characteristic of the target cell, and their forced expression in cells of a different fate. This approach has been successful in various cases, from cells of the hematopoietic systems to neurons and cardiomyocytes. Furthermore, recent reports have suggested the possibility of establishing a general lineage conversion approach bypassing pluripotency. This requires a first phase of epigenetic erasure achieved by short overexpression of the factors used to reprogram cells to a pluripotent state (such as a combination of Sox2, Klf4, c-Myc and Oct4), followed by exposure to specific developmental cues. Here we present these different direct conversion methodologies and discuss their potential as alternatives to using induced pluripotent stem cells and differentiation protocols to generate cell populations of a given fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming strategies allowing for the generation of specific cell types.
Figure 2: Direct lineage conversion as a suitable approach for the generation of specific cell types.
Figure 3: Indirect lineage conversion allows for a more general approach in the absence of specific transcription factors.

References

  1. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Gurdon, J. B. Transplanted nuclei and cell differentiation. Sci. Am. 219, 24–35 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Gurdon, J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20, 401–414 (1968).

    CAS  PubMed  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Yamanaka, S. Pluripotency and nuclear reprogramming. Phil. Trans. R. Soc. B Biol. Sci. 363, 2079–2087 (2008).

    Article  CAS  Google Scholar 

  9. French, S. W., Hoyer, K. K., Shen, R. R. & Teitell, M. A. Transdifferentiation and nuclear reprogramming in hematopoietic development and neoplasia. Immunol. Rev. 187, 22–39 (2002).

    Article  PubMed  Google Scholar 

  10. Graf, T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9, 504–516 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Qiang, L. et al. Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell 146, 359–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfisterer, U. et al. Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle 10, 3311–3316 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108, 10343–10348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Son, E. Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13, 215–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Marro, S. et al. Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9, 374–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Li, W. C., Yu, W. Y., Quinlan, J. M., Burke, Z. D. & Tosh, D. The molecular basis of transdifferentiation. J. Cell Mol. Med. 9, 569–582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J. et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Natl Acad. Sci. USA 108, 7838–7843 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Lassar, A. B., Paterson, B. M. & Weintraub, H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47, 649–656 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Gurdon, J. B. The transplantation of nuclei between two species of Xenopus. Dev. Biol. 5, 68–83 (1962).

    Article  CAS  PubMed  Google Scholar 

  27. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Fischberg, M., Gurdon, J. B. & Elsdale, T. R. Nuclear transfer in amphibia and the problem of the potentialities of the nuclei of differentiating tissues. Exp. Cell Res. 6, 161–178 (1959).

    CAS  PubMed  Google Scholar 

  29. Gurdon, J. B. Nuclear transplantation and the control of gene activity in animal development. Proc. R. Soc. Lond. B Biol. Sci. 176, 303–314 (1970).

    Article  CAS  PubMed  Google Scholar 

  30. Korn, L. J. & Gurdon, J. B. The reactivation of developmentally inert 5S genes in somatic nuclei injected into Xenopus oocytes. Nature 289, 461–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Blau, H. M., Chiu, C. P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Blau, H. M. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Pavlath, G. K. & Blau, H. M. Expression of muscle genes in heterokaryons depends on gene dosage. J. Cell Biol. 102, 124–130 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, X. Y. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez, F., Boue, S. & Izpisua Belmonte, J. C. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat. Rev. Genet. 12, 231–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida, Y. & Yamanaka, S. iPS cells: a source of cardiac regeneration. J. Mol. Cell Cardiol. 50, 327–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, T. J., Martinez-Fernandez, A. & Terzic, A. Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat. Rev. Cardiol. 7, 700–710 (2010).

    Article  PubMed  Google Scholar 

  41. Rashid, S. T. & Vallier, L. Induced pluripotent stem cells — alchemist's tale or clinical reality? Expert Rev. Mol. Med. 12, 25 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kiskinis, E. & Eggan, K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 120, 51–59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sancho-Martinez, I., Nivet, E. & Izpisua Belmonte, J. C. The labyrinth of nuclear reprogramming. J. Mol. Cell Biol. 3, 327–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panopoulos, A. D., Ruiz, S. & Izpisua Belmonte, J. C. iPSCs: induced back to controversy. Cell Stem Cell 8, 347–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Kulessa, H., Frampton, J. & Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 9, 1250–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L. & Graf, T. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25, 731–744 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Szabo, E. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Papp, B. & Plath, K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21, 486–501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, J. X. & Huang, S. Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet. 27, 55–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, Y., Kim, J., Yuan, X. & Braun, T. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res 109, 1067–1081 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Han, J. W. & Yoon, Y. S. Epigenetic landscape of pluripotent stem cells. Antioxid. Redox. Signal. 17, 205–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bilic, J. & Izpisua Belmonte, J. C. Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells 30, 33–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, J. et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 12377–12382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zaret, K. S. et al. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. Cold Spring Harb. Symp. Quant. Biol. 73, 119–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, J. et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev. 23, 2824–2838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schafer, B. W., Blakely, B. T., Darlington, G. J. & Blau, H. M. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature 344, 454–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Thayer, M. J. & Weintraub, H. Activation and repression of myogenesis in somatic cell hybrids: evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell 63, 23–32 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75, 1241–1244 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Ruiz, S. et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr. Biol. 21, 45–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11, 268–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Okita, K. & Yamanaka, S. Induced pluripotent stem cells: opportunities and challenges. Phil. Trans. R. Soc. B Biol. Sci. 366, 2198–2207 (2011).

    Article  CAS  Google Scholar 

  67. Sun, N., Longaker, M. T. & Wu, J. C. Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle 9, 880–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Menendez, S. et al. Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell 11, 41–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Tapia, N. & Scholer, H. R. p53 connects tumorigenesis and reprogramming to pluripotency. J. Exp. Med. 207, 2045–2048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Feng, R. et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc. Natl Acad. Sci. USA 105, 6057–6062 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Choi, Y. J. et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 13, 1353–1360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Judson, R. L., Babiarz, J. E., Venere, M. & Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo, C. H., Deng, J. H., Deng, Q. & Ying, S. Y. A novel role of miR-302/367 in reprogramming. Biochem. Biophys. Res. Commun. 417, 11–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Lin, S. L. et al. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 39, 1054–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Onder, T. T. & Daley, G. Q. microRNAs become macro players in somatic cell reprogramming. Genome Med. 3, 40 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pfaff, N. et al. miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep. 12, 1153–1159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, C. S., Li, Z. & Rana, T. M. microRNAs modulate iPS cell generation. RNA 17, 1451–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ambasudhan, R. et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jopling, C., Boue, S. & Izpisua Belmonte, J. C. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21, 212–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Vierbuchen, T. & Wernig, M. Direct lineage conversions: unnatural but useful? Nat. Biotechnol. 29, 892–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Foshay, K. M. et al. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol. Cell 46, 159–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Han, D. W. et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C. & Wernig, M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl Acad. Sci. USA 109, 2527–2532 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ring, K. L. et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Giorgetti, A. et al. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proc. Natl Acad. Sci. USA (2012).

Download references

Acknowledgements

We would like to thank Emmanuel Nivet for critical discussions on the manuscript. We also thank May Schwarz and Ilir Dubova for administrative support. We apologize to all our colleagues whose work could not be discussed due to space limitations. S.H.B was supported by Creative Research Initiative Program (Research Center for Chromatin Dynamics, 2009-0081563). Work in the laboratory of JCIB was supported by grants from Fundacion Cellex, the G. Harold and Leila Y. Mathers Charitable Foundation, Sanofi, the California Institute of Regenerative Medicine and MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancho-Martinez, I., Baek, S. & Izpisua Belmonte, J. Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 14, 892–899 (2012). https://doi.org/10.1038/ncb2567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing