Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic differentiation in the embryonic retina

Abstract

Unlike healthy adult tissues, cancers produce energy mainly by aerobic glycolysis instead of oxidative phosphorylation1. This adaptation, called the Warburg effect, may be a feature of all dividing cells, both normal and cancerous2, or it may be specific to cancers3. It is not known whether, in a normally growing tissue during development, proliferating and postmitotic cells produce energy in fundamentally different ways. Here we show in the embryonic Xenopus retina in vivo, that dividing progenitor cells depend less on oxidative phosphorylation for ATP production than non-dividing differentiated cells, and instead use glycogen to fuel aerobic glycolysis. The transition from glycolysis to oxidative phosphorylation is connected to the cell differentiation process. Glycolysis is indispensable for progenitor proliferation and biosynthesis, even when it is not used for ATP production. These results suggest that the Warburg effect can be a feature of normal proliferation in vivo, and that the regulation of glycolysis and oxidative phosphorylation is critical for normal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proliferating cells rely less than differentiated cells on oxidative phosphorylation for ATP, and have higher levels of glycolysis.
Figure 2: Metabolic differences between progenitors and differentiated cells are also present in the postembryonic retinal stem cell niche, and in the zebrafish retina.
Figure 3: Inhibition of glycogen breakdown shifts energy production from glycolysis to oxidative phosphorylation.
Figure 4: Cell differentiation can affect energy metabolism, whereas shifting energy metabolism to oxidative phosphorylation does not influence aspects of proliferation and differentiation.
Figure 5: Complete glycolytic block inhibits progenitor proliferation, biosynthesis and survival.

Similar content being viewed by others

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  3. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  4. Jorgensen, P., Steen, J. A. J., Steen, H. & Kirschner, M. W. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development 136, 1539–1548 (2009).

    Article  CAS  Google Scholar 

  5. Holt, C. E., Bertsch, T. W., Ellis, H. M. & Harris, W. A. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1, 15–26 (1988).

    Article  CAS  Google Scholar 

  6. Norden, C., Young, S., Link, B. A. & Harris, W. A. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138, 1195–1208 (2009).

    Article  CAS  Google Scholar 

  7. Agathocleous, M. & Harris, W. A. From progenitors to differentiated cells in the vertebrate retina. Annu. Rev. Cell Dev. Biol. 25, 45–69 (2009).

    Article  CAS  Google Scholar 

  8. Burke, R. E., Levine, D. N. & Zajac, F. E. 3rd Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174, 709–712 (1971).

    Article  CAS  Google Scholar 

  9. Perry, M. M. Identification of glycogen in thin sections of amphibian embryos. J. Cell Sci. 2, 257–264 (1967).

    CAS  PubMed  Google Scholar 

  10. Rodriguez, I. R. & Fliesler, S. J. Glycogenesis in the amphibian retina: in vitro conversion of [2-3H] mannose to [3H] glucose and subsequent incorporation into glycogen. Exp. Eye Res. 51, 71–77 (1990).

    Article  CAS  Google Scholar 

  11. Klabunde, T. et al. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 48, 6178–6193 (2005).

    Article  CAS  Google Scholar 

  12. Takahashi, S. et al. Estimation of glycogen levels in human colorectal cancer tissue: relationship with cell cycle and tumour outgrowth. J. Gastroenterol. 34, 474–480 (1999).

    Article  CAS  Google Scholar 

  13. Schnier, J. B., Nishi, K., Monks, A., Gorin, F. A. & Bradbury, E. M. Inhibition of glycogen phosphorylase (GP) by CP-91,149 induces growth inhibition correlating with brain GP expression. Biochem. Biophys. Res. Commun. 309, 126–134 (2003).

    Article  CAS  Google Scholar 

  14. Pellerin, L. & Magistretti, P. J. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab.http://dx.doi.org/10.1038/jcbfm.2011.149 (2011).

  15. Nakada, D., Levi, B. P. & Morrison, S. J. Integrating physiological regulation with stem cell and tissue homeostasis. Neuron 70, 703–718 (2011).

    Article  CAS  Google Scholar 

  16. Hall, C. N. & Attwell, D. Assessing the physiological concentration and targets of nitric oxide in brain tissue. J. Physiol. 586, 3597–3615 (2008).

    Article  CAS  Google Scholar 

  17. Hutcheson, D. A. & Vetter, M. L. The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. Dev. Biol. 232, 327–338 (2001).

    Article  CAS  Google Scholar 

  18. Locker, M. et al. Hedgehog signalling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev. 20, 3036–3048 (2006).

    Article  CAS  Google Scholar 

  19. Wang, T., Marquardt, C. & Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702–705 (1976).

    Article  CAS  Google Scholar 

  20. Brand, K. & Hermfisse, U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 11, 388–395 (1997).

    Article  CAS  Google Scholar 

  21. Birket, M. J. et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J. Cell Sci. 124, 348–358 (2011).

    Article  CAS  Google Scholar 

  22. Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60–S67 (2007).

    Article  CAS  Google Scholar 

  23. Facucho-Oliveira, J. M. & St John, J. C. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. Rep. 5, 140–158 (2009).

    Article  CAS  Google Scholar 

  24. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  25. Gottlieb, T. A. & Wallace, R. A. Intracellular glycosylation of vitellogenin in the liver of estrogen-stimulated Xenopus laevis. J. Biol. Chem. 257, 95–103 (1982).

    CAS  PubMed  Google Scholar 

  26. Yang, C. et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signalling. Cancer Res. 69, 7986–7993 (2009).

    Article  CAS  Google Scholar 

  27. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    Article  CAS  Google Scholar 

  28. Almeida, A., Bolanos, J. P. & Moncada, S. E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc. Natl Acad. Sci. USA 107, 738–741 (2010).

    Article  CAS  Google Scholar 

  29. Ozbudak, E. M., Tassy, O. & Pourquie, O. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc. Natl Acad. Sci. USA 107, 4224–4229 (2010).

    Article  CAS  Google Scholar 

  30. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    Article  CAS  Google Scholar 

  31. Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130–140 (2010).

    Article  CAS  Google Scholar 

  32. Moran, J. H. & Schnellmann, R. G. A rapid beta-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death. J. Pharmacol. Toxicol. Methods 36, 41–44 (1996).

    Article  CAS  Google Scholar 

  33. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Gallagher and H. Sladen for help with the LDH assays, N. Miller for cell sorting and D. Attwell for advice on the oxygen concentration measurements. We thank J. Bixby, C. Holt, S. Morrison, S. He and R. Johnson for comments on the manuscript. We thank the Wellcome Trust (W.A.H.) and Gonville and Caius College and the Royal Commission for the Exhibition of 1851 (M.A.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.A. conceived the study, carried out most of the experiments and co-wrote the paper. N.K.L. did the LDH and lactate assays and helped with several other aspects of the experimental work. O.R. did the Eb3–GFP imaging in zebrafish. J.J.H. did the in vivo oxygen recordings. J.L. did the SDH histochemistry. The oxygen consumption assays were done with A.J.M. W.A.H. guided the research and co-wrote the paper.

Corresponding authors

Correspondence to Michalis Agathocleous or William A. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 933 kb)

Supplementary Movie 1

Supplementary Information (MOV 2182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agathocleous, M., Love, N., Randlett, O. et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol 14, 859–864 (2012). https://doi.org/10.1038/ncb2531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing