Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconstitution of clathrin-coated bud and vesicle formation with minimal components

Abstract

During the process of clathrin-mediated endocytosis an essentially planar area of membrane has to undergo a gross deformation to form a spherical bud. Three ways have been recognized by which membranes can be induced to transform themselves locally from a planar state to one of high curvature: a change in lipid distribution between the leaflets, insertion of a protein into one leaflet and formation of a protein scaffold over the surface1. Such a scaffold is spontaneously generated by clathrin2,3,4,5. Conjectures that the attachment of clathrin was the cause of the change in curvature were challenged on theoretical grounds6, and also by the discovery of a number of clathrin-associated proteins with the capacity to induce membrane curvature7,8,9. We have now developed a cell-free system that has enabled us to demonstrate that clathrin polymerization alone is sufficient to generate spherical buds in a membrane. This process is reversible, as shown by the reassimilation of the buds into the planar membrane when the intra-clathrin contacts are dissociated by the chaperone Hsc70. We further show that the final step in the formation of coated vesicles ensues when clathrin-coated buds are released through the action of dynamin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific association of H6-ΔENTH-epsin144–575 and clathrin with Ni2+-NTA-DOGS-containing liposomes.
Figure 2: Protein-anchor-dependent clathrin bud formation.
Figure 3: AP180- and epsin-dependent recruitment of clathrin to liposomes.
Figure 4: Effect of Hsc70 and auxilin 1 on clathrin lattice structure and stability of membrane buds.
Figure 5: Generation of clathrin-coated vesicles by dynamin-catalysed scission.

Similar content being viewed by others

References

  1. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  2. Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    Article  CAS  Google Scholar 

  3. Woodward, M. P. & Roth, T. F. Coated vesicles: characterization, selective dissociation, and reassembly. Proc. Natl Acad. Sci. USA 75, 4394–4398 (1978).

    Article  CAS  Google Scholar 

  4. Ungewickell, E. & Branton, D. Assembly units of clathrin coats. Nature 289, 420–422 (1981).

    Article  CAS  Google Scholar 

  5. Kirchhausen, T. & Harrison, S. C. Protein organization in clathrin trimers. Cell 23, 755–761 (1981).

    Article  CAS  Google Scholar 

  6. Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).

    Article  CAS  Google Scholar 

  7. Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).

    Article  CAS  Google Scholar 

  8. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  Google Scholar 

  9. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  10. Drake, M. T. & Traub, L. M. Interaction of two structurally distinct sequence types with the clathrin terminal domain beta-propeller. J. Biol. Chem. 276, 28700–28709 (2001).

    Article  CAS  Google Scholar 

  11. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  Google Scholar 

  12. Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. & Ungewickell, E. J. Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem. 277, 8209–8216 (2002).

    Article  CAS  Google Scholar 

  13. Chebotareva, N. A., Kurganov, B. I. & Livanova, N. B. Biochemical effects of molecular crowding. Biochemistry 69, 1239–1251 (2004).

    CAS  PubMed  Google Scholar 

  14. Lindner, R. & Ungewickell, E. Clathrin-associated proteins of bovine brain coated vesicles. An analysis of their number and assembly-promoting activity. J. Biol. Chem. 267, 16567–16573 (1992).

    CAS  PubMed  Google Scholar 

  15. Morgan, J. R., Prasad, K., Hao, W., Augustine, G. J. & Lafer, E. M. A conserved clathrin assembly motif essential for synaptic vesicle endocytosis. J. Neurosci. 20, 8667–8676 (2000).

    Article  CAS  Google Scholar 

  16. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  Google Scholar 

  17. Norris, F. A., Ungewickell, E. & Majerus, P. W. Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP- 3/AP180) and inhibits clathrin cage assembly in vitro. J. Biol. Chem. 270, 214–217 (1995).

    Article  CAS  Google Scholar 

  18. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  19. Lata, S., Reichel, A., Brock, R., Tampe, R. & Piehler, J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205–10215 (2005).

    Article  CAS  Google Scholar 

  20. Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995).

    Article  CAS  Google Scholar 

  21. Traub, L. M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415–437 (2005).

    Article  CAS  Google Scholar 

  22. Semerdjieva, S. et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol. 183, 499–511 (2008).

    Article  CAS  Google Scholar 

  23. Nossal, R. & Zimmerberg, J. Endocytosis: curvature to the ENTH degree. Curr. Biol. 12, R770–R772 (2002).

    Article  CAS  Google Scholar 

  24. den Otter, W. K. & Briels, W. J. The generation of curved clathrin coats from flat plaques. Traffic 12, 1407–1416 (2011).

    Article  CAS  Google Scholar 

  25. Van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    Article  CAS  Google Scholar 

  26. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    Article  CAS  Google Scholar 

  27. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  28. Ramachandran, R. & Schmid, S. L. Real-time detection reveals that effectors couple dynamin’s GTP-dependent conformational changes to the membrane. EMBO J. 27, 27–37 (2008).

    Article  CAS  Google Scholar 

  29. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    Article  CAS  Google Scholar 

  30. Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984).

    Article  CAS  Google Scholar 

  31. Ahle, S., Mann, A., Eichelsbacher, U. & Ungewickell, E. Structural relationships between clathrin assembly proteins from the Golgi and the plasma membrane. EMBO J. 7, 919–929 (1988).

    Article  CAS  Google Scholar 

  32. Keen, J. H., Willingham, M. C. & Pastan, I. Clathrin coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

  33. Higgins, M. K. & McMahon, H. T. In vitro reconstitution of discrete stages of dynamin-dependent endocytosis. Methods Enzymol. 404, 597–611 (2005).

    Article  CAS  Google Scholar 

  34. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  Google Scholar 

  35. Scheele, U. et al. Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).

    Article  CAS  Google Scholar 

  36. Meyerholz, A. et al. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6, 1225–1234 (2005).

    Article  CAS  Google Scholar 

  37. Lindner, R. & Ungewickell, E. Clathrin-associated proteins of bovine brain coated vesicles. An analysis of their number and assembly-promoting activity. J. Biol. Chem. 267, 16567–16573 (1992).

    CAS  PubMed  Google Scholar 

  38. Lud, S. Q., Nikolaides, M. G., Haase, I., Fischer, M. & Bausch, A. R. Field effect of screened charges: electrical detection of peptides and proteins by a thin-film resistor. ChemPhysChem 7, 379–384 (2006).

    Article  CAS  Google Scholar 

  39. Israelachvili, J. N. & Mitchell, D. J. A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta 389, 13–19 (1975).

    Article  CAS  Google Scholar 

  40. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Böning, C. Lemke and H. Ungewickell for expert technical assistance. Special thanks go to W. B. Gratzer and A. Ungewickell for their critical comments on this work. The German Research Foundation (DFG) supported early stages of this study.

Author information

Authors and Affiliations

Authors

Contributions

E.J.U. and P.N.D. designed the study, conducted the experiments, interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Ernst J. Ungewickell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dannhauser, P., Ungewickell, E. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat Cell Biol 14, 634–639 (2012). https://doi.org/10.1038/ncb2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing