Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis

Abstract

The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref. 1). As TORC2 regulates sphingolipid metabolism2, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TORC2 activation following sphingolipid synthesis inhibition is dependent on Slm proteins.
Figure 2: Relocalization of Slm proteins in response to sphingolipid synthesis inhibition correlates with TORC2 activation.
Figure 3: Relocalization of Slm proteins away from eisosomes is required for TORC2 activation.
Figure 4: Slm proteins mediate TORC2 activation in response to membrane stretch.

Similar content being viewed by others

References

  1. Berchtold, D. & Walther, T. C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 20, 1565–1575 (2009).

    Article  CAS  Google Scholar 

  2. Aronova, S. et al. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 7, 148–158 (2008).

    Article  CAS  Google Scholar 

  3. Munro, S. Lipid rafts: Elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  Google Scholar 

  4. Ramstedt, B. & Slotte, J. P. Membrane properties of sphingomyelins. FEBS Lett. 531, 33–37 (2002).

    Article  CAS  Google Scholar 

  5. Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    Article  CAS  Google Scholar 

  6. Loewith, R. & Hall, M. N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201 (2011).

    Article  CAS  Google Scholar 

  7. Lempiainen, H. et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol. Cell 33, 704–716 (2009).

    Article  CAS  Google Scholar 

  8. Guan, X. L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009).

    Article  CAS  Google Scholar 

  9. Dickson, R. C. Thematic review series: sphingolipids. New insights intosphingolipid metabolism and function in budding yeast. J. Lipid Res. 49, 909–921 (2008).

    Article  CAS  Google Scholar 

  10. Urban, J. et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674 (2007).

    Article  CAS  Google Scholar 

  11. Wanke, V. et al. Caffeine extends yeast lifespan by targeting TORC1. Mol. Microbiol. 69, 277–285 (2008).

    Article  CAS  Google Scholar 

  12. Roelants, F. M., Baltz, A. G., Trott, A. E., Fereres, S. & Thorner, J. A protein kinase network regulates the function of aminophospholipid flippases. Proc. Natl Acad. Sci. USA 107, 34–39 (2010).

    Article  CAS  Google Scholar 

  13. Fadri, M., Daquinag, A., Wang, S., Xue, T. & Kunz, J. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol. Biol. Cell 16, 1883–1900 (2005).

    Article  CAS  Google Scholar 

  14. Bultynck, G. et al. Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol. Cell Biol. 26, 4729–4745 (2006).

    Article  CAS  Google Scholar 

  15. Tabuchi, M., Audhya, A., Parsons, A. B., Boone, C. & Emr, S. D. The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol. Cell Biol. 26, 5861–5875 (2006).

    Article  CAS  Google Scholar 

  16. Daquinag, A., Fadri, M., Jung, S. Y., Qin, J. & Kunz, J. The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol. Cell Biol. 27, 633–650 (2007).

    Article  CAS  Google Scholar 

  17. Kamada, Y. et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell Biol. 25, 7239–7248 (2005).

    Article  CAS  Google Scholar 

  18. Gallego, O. et al. A systematic screen for protein–lipid interactions in Saccharomyces cerevisiae. Mol. Syst. Biol. 6, 430 (2010).

    Article  CAS  Google Scholar 

  19. Walther, T. C. et al. Eisosomes mark static sites of endocytosis. Nature 439, 998–1003 (2006).

    Article  CAS  Google Scholar 

  20. Grossmann, G. et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088 (2008).

    Article  CAS  Google Scholar 

  21. Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436 (2003).

    Article  CAS  Google Scholar 

  22. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  23. Haruki, H., Nishikawa, J. & Laemmli, U. K. The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

    Article  CAS  Google Scholar 

  24. Han, S., Lone, M. A., Schneiter, R. & Chang, A. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl Acad. Sci. USA 107, 5851–5856 (2010).

    Article  CAS  Google Scholar 

  25. Roelants, F. M., Breslow, D. K., Muir, A., Weissman, J. S. & Thorner, J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 19222–19227 (2011).

    Article  CAS  Google Scholar 

  26. Frohlich, F. et al. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 185, 1227–1242 (2009).

    Article  Google Scholar 

  27. Kippenberger, S. et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J. Biol. Chem. 280, 3060–3067 (2005).

    Article  CAS  Google Scholar 

  28. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  CAS  Google Scholar 

  29. Sedding, D. G. et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 96, 635–642 (2005).

    Article  CAS  Google Scholar 

  30. Yu, J. et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116, 1284–1291 (2006).

    Article  CAS  Google Scholar 

  31. Zhang, B. et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 19, 1690–1700 (2007).

    Article  CAS  Google Scholar 

  32. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Wedlich-Söldner for helping with TIRF microscopy, to P. deCamilli, R. V. Farese Jr, T. Halazonetis, J. Paszkowski, M. Gonzalez-Gaitan and members of the Walther and Loewith laboratories for comments on the manuscript and to A. Huber, Y. Kamada, J. Urban, G. Tevzadze and S. Emr for the ypk1L424G, YPK2D239A, GTR1/gtr1S20L constructs and tor2W2469AW2473A and slmts strains, respectively. T.C.W. acknowledges support from the German Research Council (DFG) and the Minna–James–Heineman Foundation. H.R. and A.R. acknowledge support from SystemsX.ch and the Human Frontier Science Program, respectively. R.L. acknowledges support from the National Centre for Competence in Research (NCCR) Frontiers in Genetics, and the European Research Council. H.R., A.R. and R.L. acknowledge support from the Swiss National Science Foundation, the NCCR Chemical Biology and the Canton of Geneva.

Author information

Authors and Affiliations

Authors

Contributions

D.B. and M.P. carried out most experiments, except lipidomics analyses (I.R., H.R.), and co-localization and membrane stretch experiments (M.P., N.C. and A.R.). R.L. and T.C.W. designed experiments, interpreted results and wrote the manuscript with contributions from all team members.

Corresponding authors

Correspondence to Tobias C. Walther or Robbie Loewith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 846 kb)

Supplementary Movie 1

Supplementary Information (MOV 1464 kb)

Supplementary Movie 2

Supplementary Information (MOV 1628 kb)

Supplementary Movie 3

Supplementary Information (MOV 1767 kb)

Supplementary Movie 4

Supplementary Information (MOV 2505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchtold, D., Piccolis, M., Chiaruttini, N. et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 14, 542–547 (2012). https://doi.org/10.1038/ncb2480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing