Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model

Abstract

Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins1,2. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism3. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response4 (UPR), induce various ER quality control genes that can suppress such retinal degeneration5. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CDK5 and its regulatory subunit p35 (CDK5α) are required for Rh-1G69D-induced apoptosis.
Figure 2: Drosophila MEKK1 is required for Rh-1G69D to trigger apoptosis.
Figure 3: MEKK1 and CDK5 mediate JNK signalling activation in response to stress.
Figure 4: CDK5 phosphorylates MEKK1.
Figure 5: The course of late-onset retinal degeneration of ninaEG69D/+ flies is delayed on knockdown of CDK5, or in the mekk1ur-36−/− background.

Similar content being viewed by others

References

  1. Dryja, T. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).

    Article  CAS  Google Scholar 

  2. Sung, C. H. et al. Rhdopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl Acad. Sci. USA 88, 6481–6485 (1991).

    Article  CAS  Google Scholar 

  3. Ryoo, H. D., Domingos, P. M., Kang, M. J. & Steller, H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 26, 242–252 (2007).

    Article  CAS  Google Scholar 

  4. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to hemeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  Google Scholar 

  5. Kang, M-J. & Ryoo, H.D. Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc. Natl Acad. Sci. USA 106, 17043–17048 (2009).

    Article  CAS  Google Scholar 

  6. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  Google Scholar 

  7. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  Google Scholar 

  8. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single, or combined action of ATF6α and xbp1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  Google Scholar 

  9. Colley, N. J., Cassill, J. A., Baker, E. K. & Zuker, C. S. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc. Natl Acad. Sci. USA 92, 3070–3074 (1995).

    Article  CAS  Google Scholar 

  10. Kurada, P. & O’Tousa, J. E. Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron 14, 571–579 (1995).

    Article  CAS  Google Scholar 

  11. Hewes, R. S., Schaefer, A. M. & Taghert, P. H. The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics 155, 1711–1723 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  Google Scholar 

  13. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    Article  CAS  Google Scholar 

  14. Li, G., Scull, C., Ozcan, L. & Tabas, I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress and PKR activation to induce apoptosis. J. Cell Biol. 191, 1113–1125 (2010).

    Article  CAS  Google Scholar 

  15. Song, B. et al. Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118, 3378–3389 (2008).

    Article  CAS  Google Scholar 

  16. Timmins, J. M. et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119, 2925–2941 (2009).

    Article  CAS  Google Scholar 

  17. Tu, B. P. & Weissman, J. S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004).

    Article  CAS  Google Scholar 

  18. Morrison, D. K., Murakami, M. S. & Cleghon, V. Protein kinases and phosphatases in the Drosophila genome. J. Cell Biol. 150, 57–62 (2000).

    Article  Google Scholar 

  19. Connell-Crowley, L., Le Gall, M. & Giniger, E. The cyclin-dependent kinase CDK5 controls multiple aspects of axon patterning in vivo. Curr. Biol. 10, 599–602 (2000).

    Article  CAS  Google Scholar 

  20. Tsai, L. H., Delalle, I., Caviness, V. S., Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  Google Scholar 

  21. Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by CDK5. Nature 466, 451–456 (2010).

    Article  CAS  Google Scholar 

  22. Wei, F. Y. et al. CDK5-dependent regulation of glucose-stimulated insulin secretion. Nat. Med. 11, 1104–1108 (2005).

    Article  CAS  Google Scholar 

  23. Saito, T. et al. p25/cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. J. Neurochem. 102, 133–140 (2007).

    Article  CAS  Google Scholar 

  24. Patrick, G. N. et al. Conversion of p35 to p25 deregulates CDK5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  Google Scholar 

  25. Qu, D. et al. Role of CDK5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55, 37–52 (2007).

    Article  CAS  Google Scholar 

  26. Elbein, A. D. Inhibitors of glycoprotein synthesis. Methods Enzymol. 98, 135–154 (1983).

    Article  CAS  Google Scholar 

  27. Connell-Crowley, L., Vo, D., Luke, L. & Giniger, E. Drosophila lacking the CDK5 activator, p35, display defective axon guidance, age-dependent behavioral deficits and reduced lifespan. Mech. Dev. 124, 341–349 (2007).

    Article  CAS  Google Scholar 

  28. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA 93, 12418–12422 (1996).

    Article  CAS  Google Scholar 

  29. Hay, B. A., Wasserman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).

    Article  CAS  Google Scholar 

  30. Inoue, H. et al. A Drosophila MAPKKK, D-MEKK1, mediates stress response through activation of p38 MAPK. EMBO J. 20, 5421–5430 (2001).

    Article  CAS  Google Scholar 

  31. Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    Article  CAS  Google Scholar 

  32. Lytton, J., Westlin, M. & Hanley, M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266, 17067–17071 (1991).

    CAS  PubMed  Google Scholar 

  33. Chew, S. K. et al. The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev. Cell 7, 897–907 (2004).

    Article  CAS  Google Scholar 

  34. Xu, D., Li, Y., Arcaro, M., Lackey, M. & Bergmann, A. The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132, 2125–2134 (2005).

    Article  CAS  Google Scholar 

  35. Pichaud, F. & Desplan, C. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia. Development 128, 815–826 (2001).

    CAS  PubMed  Google Scholar 

  36. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  Google Scholar 

  37. Dhavan, R., Greer, P. L., Morabit, M. A., Orlando, L. R. & Tsai, L. H. et al. J. Neurosci. 22, 7879–7891 (2002).

    Article  CAS  Google Scholar 

  38. Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894 (2000).

    Article  CAS  Google Scholar 

  39. Zhang, Y. et al. Epigenetic blocking of an enhancer region controls irradiation-induced proapoptotic gene expression in Drosophila embryos. Dev. Cell 14, 481–493 (2008).

    Article  CAS  Google Scholar 

  40. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  41. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  Google Scholar 

  42. Riesgo-Escovar, J. R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev. 10, 2759–2768 (1996).

    Article  CAS  Google Scholar 

  43. Glise, B. & Noselli, S. Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev. 11, 1738–1747 (1997).

    Article  CAS  Google Scholar 

  44. Armknecht, S. et al. High-throughput RNA interference screens in Drosophila tissue culture cells. Methods Enzymol. 392, 55–73 (2005).

    Article  CAS  Google Scholar 

  45. Tomlinson, A. The cellular dynamics of pattern formation in the eye of Drosophila. J. Embryol. Exp. Morphol. 89 (1985).

Download references

Acknowledgements

We thank E. Giniger (NIH, USA), K. Matsumoto (Nagoya University, Japan), M. Miura (Tokyo University, Japan), the VDRC and Bloomington stock centres for reagents, E. Robbins, M. Pagano and E. Zito for technical advice, and D. Ron for discussions and critical comments on the manuscript. This work was supported by the National Institutes of Health grant R01EY020866. H.D.R. is an Ellison Medical Foundation New Scholar.

Author information

Authors and Affiliations

Authors

Contributions

M-J.K. and H.D.R. designed the experiments. J.C. carried out the EPgy2 screen. All other experiments were carried out by M-J.K. H.D.R. wrote the paper and all authors read and edited the manuscript.

Corresponding author

Correspondence to Hyung Don Ryoo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 969 kb)

Supplementary Table 1

Supplementary Information (XLS 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, MJ., Chung, J. & Ryoo, H. CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol 14, 409–415 (2012). https://doi.org/10.1038/ncb2447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing