Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of membrane traffic in the generation of epithelial cell asymmetry

Abstract

Epithelial cells have an apical–basolateral axis of polarity, which is required for epithelial functions including barrier formation, vectorial ion transport and sensory perception. Here we review what is known about the sorting signals, machineries and pathways that maintain this asymmetry, and how polarity proteins interface with membrane-trafficking pathways to generate membrane domains de novo. It is becoming apparent that membrane traffic does not simply reinforce polarity, but is critical for the generation of cortical epithelial cell asymmetry.

Epithelial cells have an apical–basolateral axis of polarity, which is required for epithelial functions including barrier formation, vectorial ion transport and sensory perception. Here we review what is known about the sorting signals, machineries and pathways that maintain this asymmetry, and how polarity proteins interface with membrane-trafficking pathways to generate membrane domains de novo.It is becoming apparent that membrane traffic does not simply reinforce polarity, but is critical for the generation of cortical epithelial cell asymmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane-trafficking pathways in polarized epithelial cells.
Figure 2: Use of two-dimensional versus three-dimensional models to study epithelial polarity.
Figure 3: Polarity complexes in polarized vertebrate epithelial cells.
Figure 4: Early steps in lumen formation during MDCK cyst development.

Similar content being viewed by others

References

  1. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833–845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao, X., Surma, M. A. & Simons, K. Polarized sorting and trafficking in epithelial cells. Cell Res. 22, 793–805 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963–970 (2006).

    CAS  PubMed  Google Scholar 

  5. Jacob, R. & Naim, H. Y. Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol. 11, 1444–1450 (2001).

    CAS  PubMed  Google Scholar 

  6. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003).

    CAS  PubMed  Google Scholar 

  7. Farr, G. A., Hull, M., Mellman, I. & Caplan, M. J. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. J. Cell Biol. 186, 269–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fukuda, M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci. 65, 2801–2813 (2008).

    CAS  PubMed  Google Scholar 

  9. Tveit, H., Akslen, L. K., Fagereng, G. L., Tranulis, M. A. & Prydz, K. A secretory Golgi bypass route to the apical surface domain of epithelial MDCK cells. Traffic 10, 1685–1695 (2009).

    CAS  PubMed  Google Scholar 

  10. Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Bio. 167, 531–543 (2004).

    CAS  Google Scholar 

  11. Cresawn, K. O. et al. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J. 26, 3737–3748 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cramm-Behrens, C. I., Dienst, M. & Jacob, R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 9, 2206–2220 (2008).

    CAS  PubMed  Google Scholar 

  13. Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA 104, 1564–1569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    CAS  PubMed  Google Scholar 

  15. Khandelwal, P., Ruiz, W. G. & Apodaca, G. Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. EMBO J. 29, 1961–1975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Parton, R. G., Prydz, K., Bomsel, M., Simons, K. & Griffiths, G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109, 3259–3272 (1989).

    CAS  PubMed  Google Scholar 

  17. Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA 91, 5061–5065 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo . Nature 485, 465–470 (2012).

    CAS  PubMed  Google Scholar 

  19. Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, E. et al. Apical and basolateral pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic 1, 480–493 (2000).

    CAS  PubMed  Google Scholar 

  21. Babbey, C. M. et al. Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 17, 3156–3175 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Henry, L. & Sheff, D. R. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol. Biol. Cell 19, 2059–2068 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leung, S.-M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized MDCK cells. Mol. Biol. Cell 11, 2131–2150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tzaban, S. et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J. Cell Biol. 185, 673–684 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson, A. et al. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol. Biol. Cell 18, 2687–2697 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jerdeva, G. V. et al. Comparison of FcRn- and pIgR-mediated transport in MDCK cells by fluorescence confocal microscopy. Traffic 11, 1205–1220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ait Slimane, T. & Hoekstra, D. Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529, 54–59 (2002).

    CAS  PubMed  Google Scholar 

  28. Gonzalez, A. & Rodriguez-Boulan, E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett. 583, 3784–3795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fölsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999).

    PubMed  Google Scholar 

  31. Simmen, T., Höning, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol. 4, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  32. Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the trans-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohno, H. et al. μ1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett. 449, 215–220 (1999).

    CAS  PubMed  Google Scholar 

  34. Gravotta, D. et al. The clathrin adaptor AP-1A mediates basolateral polarity. Dev. Cell 22, 811–823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, D. et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 141, 621–632 (2011).

    CAS  PubMed  Google Scholar 

  36. Schreiner, R. et al. The absence of a clathrin adapter confers unique polarity essential to proximal tubule function. Kidney Int. 78, 382–388 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fölsch, H., Pypaert, M., Schu, P. & Mellman, I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J. Cell Biol. 152, 595–606 (2001).

    PubMed  PubMed Central  Google Scholar 

  38. Sugimoto, H. et al. Differential recognition of tyrosine-based basolateral signals by AP-1B subunit μ1B in polarized epithelial cells. Mol. Biol. Cell 13, 2374–2382 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvajal-Gonzalez, J. M. et al. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl Acad. Sci. USA 109, 3820–3825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong, X. et al. An association between type Iγ PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization. Mol. Biol. Cell 23, 87–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y., Ling, K., Wagoner, M. P. & Anderson, R. A. Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol. 178, 297–308 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell 18, 3978–3992 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    CAS  PubMed  Google Scholar 

  45. Folsch, H., Pypaert, M., Maday, S., Pelletier, L. & Mellman, I. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J. Cell Biol. 163, 351–362 (2003).

    PubMed  PubMed Central  Google Scholar 

  46. Miranda, K. C. et al. A dileucine motif targets E-cadherin to the basolateral cell surface in Madin-Darby canine kidney and LLC-PK1 epithelial cells. J. Biol. Chem. 276, 22565–22572 (2001).

    CAS  PubMed  Google Scholar 

  47. Kang, R. S. & Folsch, H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J. Cell Biol. 193, 51–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mishra, S. K., Watkins, S. C. & Traub, L. M. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc. Natl Acad. Sci. USA 99, 16099–16104 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fields, I. C., King, S. M., Shteyn, E., Kang, R. S. & Folsch, H. Phosphatidylinositol 3,4,5-trisphosphate localization in recycling endosomes is necessary for AP-1B-dependent sorting in polarized epithelial cells. Mol. Biol. Cell 21, 95–105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shteyn, E., Pigati, L. & Folsch, H. Arf6 regulates AP-1B-dependent sorting in polarized epithelial cells. J. Cell Biol. 194, 873–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Au, J. S., Puri, C., Ihrke, G., Kendrick-Jones, J. & Buss, F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J. Cell Biol. 177, 103–114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fields, I. C. et al. v-SNARE cellubrevin is required for basolateral sorting of AP-1B-dependent cargo in polarized epithelial cells. J. Cell Biol. 177, 477–488 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    CAS  PubMed  Google Scholar 

  56. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng, S. et al. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J. Biol. Chem. 287, 15602–15609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, J., Krishnaswami, S. R. & Gleeson, J. G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796–3805 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA 107, 6346–6351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Omori, Y. et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol. 10, 437–444 (2008).

    CAS  PubMed  Google Scholar 

  61. Deora, A. A. et al. The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol. Biol. Cell 15, 4148–4165 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, C. et al. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-α containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol. Biol. Cell 18, 3081–3093 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Kizhatil, K. et al. Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J. Biol. Chem. 282, 26552–26561 (2007).

    CAS  PubMed  Google Scholar 

  64. Sorrosal, G., Perez, L., Herranz, H. & Milan, M. Scarface, a secreted serine protease-like protein, regulates polarized localization of laminin A at the basement membrane of the Drosophila embryo. EMBO Rep. 11, 373–379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Denef, N., Chen, Y., Weeks, S. D., Barcelo, G. & Schupbach, T. Crag regulates epithelial architecture and polarized deposition of basement membrane proteins in Drosophila . Dev. Cell 14, 354–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Weisz, O. A. & Rodriguez-Boulan, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122, 4253–4266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol. 9, 291–294 (1999).

    CAS  PubMed  Google Scholar 

  69. Boscher, C., Dennis, J. W. & Nabi, I. R. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 23, 383–392 (2011).

    CAS  PubMed  Google Scholar 

  70. Delacour, D. et al. Requirement for galectin-3 in apical protein sorting. Curr. Biol. 16, 408–414 (2006).

    CAS  PubMed  Google Scholar 

  71. Delacour, D. et al. Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo . J. Cell Sci. 121, 458–465 (2008).

    CAS  PubMed  Google Scholar 

  72. Mattila, P. E. et al. Multiple biosynthetic trafficking routes for apically secreted proteins in MDCK cells. Traffic 13, 433–442 (2012).

    CAS  PubMed  Google Scholar 

  73. Delacour, D. et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol. 169, 491–501 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stechly, L. et al. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10, 438–450 (2009).

    CAS  PubMed  Google Scholar 

  75. Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical-basal polarity in Madin–Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA 107, 17633–17638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Delacour, D. et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8, 379–388 (2007).

    CAS  PubMed  Google Scholar 

  77. Astanina, K., Delebinski, C. I., Delacour, D. & Jacob, R. Annexin XIIIb guides raft-dependent and -independent apical traffic in MDCK cells. Eur. J. Cell Biol. 89, 799–806 (2010).

    CAS  PubMed  Google Scholar 

  78. Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem. 279, 3680–3684 (2004).

    CAS  PubMed  Google Scholar 

  79. Magal, L. G. et al. Clustering and lateral concentration of raft lipids by the MAL protein. Mol. Biol. Cell 20, 3751–3762 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, G. et al. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells. Mol. Biol. Cell 23, 1354–1366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. de Marco, M. C. et al. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J. Cell Biol. 159, 37–44 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    CAS  PubMed  Google Scholar 

  83. Klemm, R. W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185, 601–612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol. 13, 1189–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    CAS  PubMed  Google Scholar 

  86. Nokes, R. L., Fields, I. C., Collins, R. N. & Folsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J. Cell Biol. 182, 845–853 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Galvez-Santisteban, M. et al. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nat. Cell Biol. 14, 838–849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem. 273, 15734–15741 (1998).

    CAS  PubMed  Google Scholar 

  89. Jaulin, F. & Kreitzer, G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J. Cell Biol. 190, 443–460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell 13, 511–522 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 155, 77–88 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yeh, T. Y., Peretti, D., Chuang, J. Z., Rodriguez-Boulan, E. & Sung, C. H. Regulatory dissociation of Tctex-1 light chain from dynein complex is essential for the apical delivery of rhodopsin. Traffic 7, 1495–1502 (2006).

    CAS  PubMed  Google Scholar 

  93. Ameen, N. & Apodaca, G. Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8, 998–1006 (2007).

    CAS  PubMed  Google Scholar 

  94. Eichler, T. W., Kogel, T., Bukoreshtliev, N. V. & Gerdes, H. H. The role of myosin Va in secretory granule trafficking and exocytosis. Biochem. Soc. Trans. 34, 671–674 (2006).

    CAS  PubMed  Google Scholar 

  95. Roland, J. T. et al. Rab GTPase–Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA 108, 2789–2794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bond, L. M., Brandstaetter, H., Sellers, J. R., Kendrick-Jones, J. & Buss, F. Myosin motor proteins are involved in the final stages of the secretory pathways. Biochem. Soc. Trans. 39, 1115–1119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Born, M., Pahner, I., Ahnert-Hilger, G. & Jons, T. The maintenance of the permeability barrier of bladder facet cells requires a continuous fusion of discoid vesicles with the apical plasma membrane. Eur. J. Cell Biol. 82, 343–350 (2003).

    CAS  PubMed  Google Scholar 

  98. Nielsen, S. et al. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J. Clin. Invest. 96, 1834–1844 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Procino, G. et al. AQP2 exocytosis in the renal collecting duct — involvement of SNARE isoforms and the regulatory role of Munc18b. J. Cell Sci. 121, 2097–2106 (2008).

    CAS  PubMed  Google Scholar 

  100. Karvar, S., Yao, X., Crothers, J. M. Jr, Liu, Y. & Forte, J. G. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J. Biol. Chem. 277, 50030–50035 (2002).

    CAS  PubMed  Google Scholar 

  101. Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 7, 2007–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Reales, E., Sharma, N., Low, S. H., Folsch, H. & Weimbs, T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE 6, e21181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol. 173, 937–948 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Schluter, M. A. & Margolis, B. Apicobasal polarity in the kidney. Exp. Cell Res. 318, 1033–1039 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655–685 (2012).

    CAS  PubMed  Google Scholar 

  107. Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl Acad. Sci. USA 101, 13792–13797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nechiporuk, T., Fernandez, T. E. & Vasioukhin, V. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5−/− mice. Dev. Cell 13, 338–350 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Laprise, P. et al. Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins. Nature 459, 1141–1145 (2009).

    CAS  PubMed  Google Scholar 

  110. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol. 5, 301–308 (2003).

    CAS  PubMed  Google Scholar 

  111. Laprise, P. & Tepass, U. Novel insights into epithelial polarity proteins in Drosophila . Trends Cell Biol. 21, 401–408 (2011).

    CAS  PubMed  Google Scholar 

  112. Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol. 20, 445–452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat. Cell Biol. 14, 666–676 (2012).

    CAS  PubMed  Google Scholar 

  114. Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferrari, A., Veligodskiy, A., Berge, U., Lucas, M. S. & Kroschewski, R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J. Cell Sci. 121, 3649–3663 (2008).

    CAS  PubMed  Google Scholar 

  117. Xu, K. et al. Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev. Cell 20, 526–539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Herwig, L. et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol. 21, 1942–1948 (2011).

    CAS  PubMed  Google Scholar 

  119. Schluter, M. A. & Margolis, B. Apical lumen formation in renal epithelia. J. Am. Soc. Nephrol. 20, 1444–1452 (2009).

    PubMed  Google Scholar 

  120. Willenborg, C. et al. Interaction between FIP5 and SNX18 regulates epithelial lumen formation. J. Cell Biol. 195, 71–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jin, Y. et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev. Cell 21, 1156–1170 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Horikoshi, Y. et al. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci. 122, 1595–1606 (2009).

    CAS  PubMed  Google Scholar 

  123. Zhang, H. et al. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 139, 2071–2083 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Shafaq-Zadah, M., Brocard, L., Solari, F. & Michaux, G. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 139, 2061–2070 (2012).

    CAS  PubMed  Google Scholar 

  125. Nelson, W. J. Remodeling epithelial cell organization: transitions between front–rear and apical–basal polarity. Cold Spring Harb. Perspect. Biol. 1, a000513 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. Wang, Q., Chen, X. W. & Margolis, B. PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol. Biol. Cell 18, 874–885 (2007).

    PubMed  PubMed Central  Google Scholar 

  127. Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol. 178, 323–335 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).

    CAS  PubMed  Google Scholar 

  131. Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell 16, 551–562 (2009).

    CAS  PubMed  Google Scholar 

  133. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  134. O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat. Cell Biol. 3, 831–838 (2001).

    CAS  PubMed  Google Scholar 

  135. O'Brien, L. E. et al. Morphological and biochemical analysis of Rac1 in three-dimensional epithelial cell cultures. Methods Enzymol. 406, 676–691 (2006).

    CAS  PubMed  Google Scholar 

  136. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    CAS  PubMed  Google Scholar 

  137. Zegers, M. M., O'Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro . Trends Cell Biol. 13, 169–176 (2003).

    CAS  PubMed  Google Scholar 

  138. Yu, W. et al. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol. Biol. Cell 14, 748–763 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Apodaca, G. Opening ahead: early steps in lumen formation revealed. Nat. Cell Biol. 12, 1026–1028 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R37DK54425 and RO1DK077777 (to G.A.) and K99CA163535 (to D.M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana I. Gallo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apodaca, G., Gallo, L. & Bryant, D. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol 14, 1235–1243 (2012). https://doi.org/10.1038/ncb2635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing