Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Canonical and atypical E2Fs regulate the mammalian endocycle

Abstract

The endocycle is a variant cell cycle consisting of successive DNA synthesis and gap phases that yield highly polyploid cells. Although essential for metazoan development, relatively little is known about its control or physiologic role in mammals. Using lineage-specific cre mice we identified two opposing arms of the E2F program, one driven by canonical transcription activation (E2F1, E2F2 and E2F3) and the other by atypical repression (E2F7 and E2F8), that converge on the regulation of endocycles in vivo. Ablation of canonical activators in the two endocycling tissues of mammals, trophoblast giant cells in the placenta and hepatocytes in the liver, augmented genome ploidy, whereas ablation of atypical repressors diminished ploidy. These two antagonistic arms coordinate the expression of a unique G2/M transcriptional program that is critical for mitosis, karyokinesis and cytokinesis. These results provide in vivo evidence for a direct role of E2F family members in regulating non-traditional cell cycles in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of E2f activators promotes trophoblast giant cells (TGC) and hepatocyte endocycles.
Figure 2: E2f7 and E2f8 promote TGC endocycles.
Figure 3: E2f8 is sufficient to promote hepatocyte endocycles.
Figure 4: Canonical activator and atypical repressor E2Fs regulate key transcriptional networks coordinating endocycles.
Figure 5: Atypical repressors E2F7/E2F8 directly bind gene targets involved in endocycle control.
Figure 6: Loss of E2f1 restores endocycles in E2f7/E2f8 deficient TGCs and hepatocytes.
Figure 7: Cyclin A ablation reinstates genome ploidy of E2f7/E2f8-deficient TGCs and hepatocytes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Lilly, M. A. & Duronio, R. J. New insights into cell cycle control from the Drosophila endocycle. Oncogene 24, 2765–2775 (2005).

    Article  CAS  Google Scholar 

  2. Varmuza, S., Prideaux, V., Kothary, R. & Rossant, J. Polytene chromosomes in mouse trophoblast giant cells. Development 102, 127–134 (1988).

    CAS  PubMed  Google Scholar 

  3. Cross, J. How to make a placenta: mechanisms of trophoblast cell differentiation in mice—a review. Placenta 26, S3–S9 (2005).

    Article  Google Scholar 

  4. Mehrotra, S., Maqbool, S. B., Kolpakas, A., Murnen, K. & Calvi, B. R. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Gen. Dev. 22, 3158–3171 (2008).

    Article  CAS  Google Scholar 

  5. Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: polyploidy with purpose. Gen. Dev. 23, 2461–2477 (2009).

    Article  CAS  Google Scholar 

  6. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell. Biol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  7. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Gen. Dev. 14, 2393–2409 (2000).

    Article  CAS  Google Scholar 

  8. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  Google Scholar 

  9. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  Google Scholar 

  10. Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Gen. Dev. 14, 690–703 (2000).

    CAS  Google Scholar 

  11. Murga, M. et al. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity 15, 959–970 (2001).

    Article  CAS  Google Scholar 

  12. Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell 6, 281–91 (2000).

    Article  CAS  Google Scholar 

  13. Rempel, R. E. et al. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol. Cell 6, 293–306 (2000).

    Article  CAS  Google Scholar 

  14. Lindeman, G. J. et al. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Gen. Dev. 12, 1092–1098 (1998).

    Article  CAS  Google Scholar 

  15. Pohlers, M. et al. A role for E2F6 in the restriction of male-germ-cell-specific gene expression. Curr. Biol. 15, 1051–1057 (2005).

    Article  CAS  Google Scholar 

  16. Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell 14, 62–75 (2008).

    Article  CAS  Google Scholar 

  17. Chen, H-Z., Tsai, S-Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    Article  CAS  Google Scholar 

  18. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  19. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    Article  CAS  Google Scholar 

  20. Breuer, C., Ishida, T. & Sugimoto, K. Developmental control of endocycles and cell growth in plants. Curr. Opin. Plant Biol. 13, 654–660 (2010).

    Article  CAS  Google Scholar 

  21. Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 480, 123–127 (2011).

    Article  CAS  Google Scholar 

  22. Barbason, H., Van Cantfort, J. & Houbrechts, N. Correlation between tissular and division functions in the liver of young rats. Cell Tissue Kinet. 7, 319–326 (1974).

    CAS  PubMed  Google Scholar 

  23. Dallman, P. R., Spirito, R. A. & Siimes, M. A. Diurnal patterns of DNA synthesis in the rat: modification by diet and feeding schedule. J. Nutr. 104, 1234–1241 (1974).

    Article  CAS  Google Scholar 

  24. Tsai, S-Y. et al. Mouse development with a single E2F activator. Nature 454, 1137–1141 (2008).

    Article  CAS  Google Scholar 

  25. Chong, J-L. et al. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    Article  CAS  Google Scholar 

  26. Wenzel, P. et al. Cell proliferation in the absence of E2F1-3. Dev. Biol. 351, 35–45 (2010).

    Article  Google Scholar 

  27. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 8, 1427–1429 (1995).

    Article  Google Scholar 

  28. de Bruin, A. et al. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049 (2003).

    Article  CAS  Google Scholar 

  29. Di Stefano, L. et al. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298 (2003).

    Article  CAS  Google Scholar 

  30. Maiti, B. et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280, 18211–18220 (2005).

    Article  CAS  Google Scholar 

  31. Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 33, 5458–5470 (2005).

    Article  CAS  Google Scholar 

  32. Ouseph, M. M. et al. Atypical E2F repressors and activators coordinate placental development. Dev. Cell 22, 849–862 (2012).

    Article  CAS  Google Scholar 

  33. Postic, C. & Magnuson, M. A. DNA excision in liver by an albumin-cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).

    Article  CAS  Google Scholar 

  34. Margall-Ducos, G., Celton-Morizur, S., Couton, D., Bregerie, O. & Desdouets, C. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J. Cell Sci. 120, 3633–3639 (2007).

    Article  CAS  Google Scholar 

  35. Schuler, M., Dierich, A., Chambon, P & Metzger, D. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis 39, 167–172 (2004).

    Article  CAS  Google Scholar 

  36. Normand, G. & King, R. W. Understanding cytokinesis failure. Adv. Exp. Med. Biol. 676, 27–55 (2010).

    Article  CAS  Google Scholar 

  37. Ullah, Z., Lee, C. Y., Lilly, M. A. & DePamphilis, M. L. Developmentally programmed endoreduplication in animals. Cell Cycle 8, 1501–1509 (2009).

    Article  CAS  Google Scholar 

  38. Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression. Mol. Cell. Biol. 21, 3692–3703 (2001).

    Article  CAS  Google Scholar 

  39. Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352–365 (2009).

    Article  CAS  Google Scholar 

  40. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001).

    Article  CAS  Google Scholar 

  41. Inzé, D. & De Veylder, L. Cell cycle regulation in plant development. Annu. Rev. Genet. 40, 77–105 (2006).

    Article  Google Scholar 

  42. Duronio, R. J., O’Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Gen. Dev. 9, 1445–1455 (1995).

    Article  CAS  Google Scholar 

  43. Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875 (2003).

    Article  CAS  Google Scholar 

  44. Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 functionobligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    Article  CAS  Google Scholar 

  45. Kohn, M. J., Bronson, R. T., Harlow, E., Dyson, N. J. & Yamasaki, L. Dp1 is required for extra-embryonic development. Development 130, 1295–1305 (2003).

    Article  CAS  Google Scholar 

  46. Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172 (1994).

    Article  CAS  Google Scholar 

  47. Krek, W. et al. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83, 1149–1158 (1995).

    Article  CAS  Google Scholar 

  48. Hardie, D. C., Gregory, T. R. & Hebert, P. D. From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J. Histochem. Cytochem. 50, 735–749 (2002).

    Article  CAS  Google Scholar 

  49. Mayhew, C. N. et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 65, 4568–4577 (2005).

    Article  CAS  Google Scholar 

  50. Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res. 31, 1–8 (2003).

    Article  Google Scholar 

  51. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A Comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  52. Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006).

    Article  Google Scholar 

  53. Zhu, S. C. & Yuille, A. Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. Pattern Anal. 18, 884–900 (1996).

    Article  Google Scholar 

  54. Sahgal, N., Canham, L. N., Canham, B. & Soares, M. J. Rcho-1 trophoblast stem cells: a model system for studying trophoblast cell differentiation. Methods Mol. Med. 121, 159–178 (2006).

    PubMed  Google Scholar 

  55. Liu, F., Song, Y. K. & Liu, D. Hydrodynamic-based transfection in animal by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

  56. Ullah, Z., Kohn, M. J., Yagi, R., Vassilev, L. T. & DePamphilis, M. L. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Gen. Dev. 22, 3204–3236 (2008).

    Article  Google Scholar 

  57. Nagahama, H. et al. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol. 203, 77–87 (2001).

    Article  CAS  Google Scholar 

  58. Schultze, B., Gerhard, H. & Maurer, W. Liver Regeneration after Experimental Injury (Grune and Stratton, 1975).

    Google Scholar 

  59. Kiermayer, C., Conrad, M., Schneider, M., Schmidt, J. & Brielmeier, M. Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45, 11–16 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Rawahneh, J. Moffitt and N. Lovett for excellent technical assistance with histology, and P. Wenzel for generating and collecting 123tko placentae. We also thank these individuals from OSUCCC Shared Resources: T. Wise, J. Palatini, H. Alders, P. Yan, P. Fada and B. Rodriguez (Microarray and Nucleic Acid Shared Resources); B. McElwain (Analytic Cytometry); R. Burry, K. Wolken, and B. Kemmenoe (Microscopy and Imaging); and K. La Perle (Comparative Pathology and Mouse Phenotyping). We are grateful for PL-1 antibodies provided by F. Talamantes (University of California, Santa Cruz, CA), Rcho-1 trophoblast stem cells from M. J. Soares (University of Kansas Medical Center, Kansas City, KS) and HepG2 cells from S. Jacobs. This work was funded by NIH grants to G.L. (R01CA85619, R01CA82259, R01HD047470, P01CA097189) and P.S. (R01CA132740). G.L. is a recipient of The Pew Charitable Trust Scholar Award and the Leukemia & Lymphoma Society Scholar Award. H-Z.C., M.M., S.S., S.R. and T. P. are recipients of the Pelotonia Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

H-Z.C., M.M.O., J.L. and G.L. designed the experiments. H-Z.C., M.M.O., J.L., T.P., V.C., L.K. and S.B. performed experiments. H-Z.C. and M.M.O. co-wrote the paper with G.L.; all other authors listed helped perform experiments. Specifically, J.C.T., S.R., S.S., M.L., R.M. and K.H. helped with experiments relating to confocal microscopy and 3D reconstruction. X.M. and S.F. helped analyse data and performed statistics. I.K., D.J.W. and P.S. provided mice for the study and reviewed drafts of the manuscript. T.H., B.L. and V.J. contributed to discussion relating to Affymetrix/NanoString analyses.

Corresponding author

Correspondence to Gustavo Leone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 891 kb)

Supplementary Tables 1–3

Supplementary Information (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HZ., Ouseph, M., Li, J. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat Cell Biol 14, 1192–1202 (2012). https://doi.org/10.1038/ncb2595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing