Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulus-dependent phosphorylation of profilin-1 in angiogenesis

Abstract

Angiogenesis, the formation of new blood vessels, is fundamental to development and post-injury tissue repair. Vascular endothelial growth factor (VEGF)-A guides and enhances endothelial cell migration to initiate angiogenesis. Profilin-1 (Pfn-1) is an actin-binding protein that enhances actin filament formation and cell migration, but stimulus-dependent regulation of Pfn-1 has not been observed. Here, we show that VEGF-A-inducible phosphorylation of Pfn-1 at Tyr 129 is critical for endothelial cell migration and angiogenesis. Chemotactic activation of VEGF receptor kinase-2 (VEGFR2) and Src induces Pfn-1 phosphorylation in the cell leading edge, promoting Pfn-1 binding to actin and actin polymerization. Conditional endothelial knock-in of phosphorylation-deficient Pfn1Y129F in mice reveals that Pfn-1 phosphorylation is critical for angiogenesis in response to wounding and ischaemic injury, but not for developmental angiogenesis. Thus, VEGFR2/Src-mediated phosphorylation of Pfn-1 bypasses canonical, multistep intracellular signalling events to initiate endothelial cell migration and angiogenesis, and might serve as a selective therapeutic target for anti-angiogenic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF-A induces phosphorylation of Pfn-1 at Tyr 129 during endothelial cell migration.
Figure 2: Phosphorylation of Pfn-1 at Tyr 129 promotes binding to actin and actin polymerization.
Figure 3: Phosphorylation of Pfn-1 at Tyr 129 by VEGFR2 and Src.
Figure 4: Phosphorylation of Pfn-1 at Tyr 129 is spatially restricted to the leading edge of migrating endothelial cells, and is required for VEGF-A-induced endothelial cell migration.
Figure 5: Phosphorylation of Pfn-1 at Tyr 129 is expressed preferentially in infarcted cardiac blood vessels.
Figure 6: Knock-in of phospho-deficient Pfn1Y129F / Y129F in mouse endothelial cells reduces VEGF-A-induced cell migration.
Figure 7: Phosphorylation of Pfn-1 at Tyr 129 is required for angiogenesis during post-injury tissue repair but not for developmental angiogenesis.

Similar content being viewed by others

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  2. Dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003).

    Article  CAS  Google Scholar 

  3. Bagorda, A. & Parent, C. A. Eukaryotic chemotaxis at a glance. J. Cell Sci. 121, 2621–2624 (2008).

    Article  CAS  Google Scholar 

  4. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  5. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69 S3, 4–10 (2005).

    Article  Google Scholar 

  6. Lamalice, L., Le Boeuf, F. & Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 100, 782–794 (2007).

    Article  CAS  Google Scholar 

  7. Ware, J. A. & Simons, M. Angiogenesis in ischemic heart disease. Nat. Med. 3, 158–164 (1997).

    Article  CAS  Google Scholar 

  8. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  Google Scholar 

  9. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  10. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  Google Scholar 

  11. Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851 (2003).

    Article  CAS  Google Scholar 

  12. Witke, W., Sutherland, J. D., Sharpe, A., Arai, M. & Kwiatkowski, D. J. Profilin I is essential for cell survival and cell division in early mouse development. Proc. Natl Acad. Sci. USA 98, 3832–3836 (2001).

    Article  CAS  Google Scholar 

  13. Tseng, P. C., Runge, M. S., Cooper, J. A., Williams, R. C. Jr & Pollard, T. D. Physical, immunochemical, and functional properties of Acanthamoeba profilin. J. Cell Biol. 98, 214–221 (1984).

    Article  CAS  Google Scholar 

  14. Schluter, K., Jockusch, B. M. & Rothkegel, M. Profilins as regulators of actin dynamics. Biochim. Biophys. Acta 1359, 97–109 (1997).

    Article  CAS  Google Scholar 

  15. Witke, W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14, 461–469 (2004).

    Article  CAS  Google Scholar 

  16. Haugwitz, M., Noegel, A. A., Karakesisoglou, J. & Schleicher, M. Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79, 303–314 (1994).

    Article  CAS  Google Scholar 

  17. Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).

    CAS  PubMed  Google Scholar 

  18. Ding, Z., Lambrechts, A., Parepally, M. & Roy, P. Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J. Cell Sci. 119, 4127–4137 (2006).

    Article  CAS  Google Scholar 

  19. Fan, Y., Gong, Y., Ghosh, P. K., Graham, L. M. & Fox, P. L. Spatial coordination of actin polymerization and ILK-Akt2 activity during endothelial cell migration. Dev. Cell 16, 661–674 (2009).

    Article  CAS  Google Scholar 

  20. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  Google Scholar 

  21. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  Google Scholar 

  22. Sathish, K. et al. Phosphorylation of profilin regulates its interaction with actin and poly (L-proline). Cell Signal. 16, 589–596 (2004).

    Article  CAS  Google Scholar 

  23. Schluter, K., Schleicher, M. & Jockusch, B. M. Effects of single amino acid substitutions in the actin-binding site on the biological activity of bovine profilin I. J. Cell Sci. 111, 3261–3273 (1998).

    CAS  PubMed  Google Scholar 

  24. Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. & Lindberg, U. The structure of crystalline profilin- β-actin. Nature 365, 810–816 (1993).

    Article  CAS  Google Scholar 

  25. Kang, F., Purich, D. L. & Southwick, F. S. Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J. Biol. Chem. 274, 36963–36972 (1999).

    Article  CAS  Google Scholar 

  26. Holt, M. R. & Koffer, A. Cell motility: proline-rich proteins promote protrusions. Trends Cell Biol. 11, 38–46 (2001).

    Article  CAS  Google Scholar 

  27. Pantaloni, D. & Carlier, M. F. How profilin promotes actin filament assembly in the presence of thymosin β4. Cell 75, 1007–1014 (1993).

    Article  CAS  Google Scholar 

  28. Ding, Z., Gau, D., Deasy, B., Wells, A. & Roy, P. Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp. Cell Res. 315, 2963–2973 (2009).

    Article  CAS  Google Scholar 

  29. Yang, C. et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol. 150, 1001–1012 (2000).

    Article  CAS  Google Scholar 

  30. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14, 1583–1589 (1995).

    Article  CAS  Google Scholar 

  31. Ferron, F., Rebowski, G., Lee, S. H. & Dominguez, R. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J. 26, 4597–4606 (2007).

    Article  CAS  Google Scholar 

  32. Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29, 789–791 (2009).

    Article  CAS  Google Scholar 

  33. McMahon, G. VEGF receptor signaling in tumor angiogenesis. Oncologist 5 S1, 3–10 (2000).

    Article  Google Scholar 

  34. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling—in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  35. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  Google Scholar 

  36. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    Article  CAS  Google Scholar 

  37. Luttun, A., Tjwa, M. & Carmeliet, P. Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann. N.Y. Acad. Sci. 979, 80–93 (2002).

    Article  CAS  Google Scholar 

  38. Matsumoto, T. et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24, 2342–2353 (2005).

    Article  CAS  Google Scholar 

  39. Dayanir, V., Meyer, R. D., Lashkari, K. & Rahimi, N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J. Biol. Chem. 276, 17686–17692 (2001).

    Article  CAS  Google Scholar 

  40. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  41. Huttenlocher, A. Cell polarization mechanisms during directed cell migration. Nat. Cell Biol. 7, 336–337 (2005).

    Article  CAS  Google Scholar 

  42. Khurana, R., Simons, M., Martin, J. F. & Zachary, I. C. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112, 1813–1824 (2005).

    Article  Google Scholar 

  43. Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  Google Scholar 

  44. Kano, A. et al. Endothelial cells require STAT3 for protection against endotoxin-induced inflammation. J. Exp. Med. 198, 1517–1525 (2003).

    Article  CAS  Google Scholar 

  45. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  Google Scholar 

  46. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110–114 (2012).

    Article  CAS  Google Scholar 

  47. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  Google Scholar 

  48. Iglesias, P. A. & Devreotes, P. N. Navigating through models of chemotaxis. Curr. Opin. Cell Biol. 20, 35–40 (2008).

    Article  CAS  Google Scholar 

  49. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  50. Mouneimne, G. et al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16, 2193–2205 (2006).

    Article  CAS  Google Scholar 

  51. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  Google Scholar 

  52. Short, S. M. et al. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by β1 integrins. J. Cell Biol. 168, 643–653 (2005).

    Article  CAS  Google Scholar 

  53. Dougher, M. & Terman, B. I. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18, 1619–1627 (1999).

    Article  CAS  Google Scholar 

  54. Hamada, K. et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19, 2054–2065 (2005).

    Article  CAS  Google Scholar 

  55. Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250 (2002).

    Article  CAS  Google Scholar 

  56. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  57. Carracedo, A. & Pandolfi, P. P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    Article  CAS  Google Scholar 

  58. Fresno Vara, J. A. et al. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193–204 (2004).

    Article  Google Scholar 

  59. Arif, A. et al. Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol. Cell 35, 164–180 (2009).

    Article  CAS  Google Scholar 

  60. Korenbaum, E. et al. The role of profilin in actin polymerization and nucleotide exchange. Biochemistry 37, 9274–9283 (1998).

    Article  CAS  Google Scholar 

  61. Palmer, S. M., Playford, M. P., Craig, S. W., Schaller, M. D. & Campbell, S. L. Lipid binding to the tail domain of vinculin: specificity and the role of the N and C termini. J. Biol. Chem. 284, 7223–7231 (2009).

    Article  CAS  Google Scholar 

  62. Skare, P. & Karlsson, R. Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett. 522, 119–124 (2002).

    Article  CAS  Google Scholar 

  63. Chaudhuri, P. et al. Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol. Biol. Cell 19, 3203–3211 (2008).

    Article  CAS  Google Scholar 

  64. Ghosh, P. K. et al. Membrane microviscosity regulates endothelial cell motility. Nat. Cell Biol. 4, 894–900 (2002).

    Article  CAS  Google Scholar 

  65. Hoffman, M. et al. Cutaneous wound healing is impaired in hemophilia B. Blood 108, 3053–3060 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Levine and T. Egelhoff for helpful suggestions, X. West, A. Vasanji and J. Boerckel for technical assistance in punch-wound and microCT studies, and J. Drazba for image analysis. Cdh5-Cre/ERT2 mice were provided by R. Adams, Max Planck Institute, Germany. This work was supported by National Institutes of Health grants P01 HL029582, P01 HL076491 and R21 HL094841 (to P.L.F.).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. designed, performed and analysed all experiments, produced figures, and wrote the initial draft of the paper. A.A. generated and analysed the data in Figs 1c–e, 2e and Supplementary Fig. S4d. Y.Q. designed and performed immunohistochemistry analysis in Fig. 5a. J.J. contributed to the analysis of the BIAcore in Fig. 2d. S.M.E. performed phylogenic analysis of Pfn-1. B.W. identified the Pfn-1 phosphorylation site by mass spectrometry as shown in Fig. 1b and Supplementary Fig. S2. A.H., L.M.G. and M.S.P. helped write and edit the final draft of the manuscript. P.L.F designed, supervised, and analysed all experiments and wrote the final draft of the manuscript.

Corresponding author

Correspondence to Paul L. Fox.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5733 kb)

Supplementary Table 1

Supplementary Information (XLS 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Arif, A., Gong, Y. et al. Stimulus-dependent phosphorylation of profilin-1 in angiogenesis. Nat Cell Biol 14, 1046–1056 (2012). https://doi.org/10.1038/ncb2580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing