Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro generation of human cells with cancer stem cell properties

Abstract

Cancer stem cells (CSCs) have been implicated in the maintenance and progression of several types of cancer. The origin and cellular properties of human CSCs are poorly characterized. Here we show that CSC-like cells can be generated in vitro by oncogenic reprogramming of human somatic cells during neoplastic transformation. We find that in vitro transformation confers stem-cell properties to primary differentiated fibroblasts, including the ability to self-renew and to differentiate along multiple lineages. Tumours induced by transformed fibroblasts are hierarchically organized, and the cells that act as CSCs to initiate and maintain tumour growth are marked by the stage-specific embryonic antigen SSEA-1. Heterogeneous lineages of cancer cells in the bulk of the tumour arise through differentiation of SSEA-1+ fibroblasts, and differentiation is associated with loss of tumorigenic potential. These findings establish an experimental system to characterize cellular and molecular properties of human CSCs and demonstrate that somatic cells have the potential to de-differentiate and acquire properties of CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of in vitro-transformed fibroblasts.
Figure 2: The presence of the stage-specific embryonic antigen SSEA-1 in populations of differentiated cells correlates with acquisition of tumorigenicity on transformation.
Figure 3: SSEA-1 identifies a biologically distinct subpopulation of transformed fibroblasts.
Figure 4: SSEA-1+ fibroblasts are responsible for tumour initiation.
Figure 5: SSEA-1+ fibroblasts differentiate into non-fibroblastic cells during tumour growth.
Figure 6: Hierarchical organization of tumours induced byin vitro-transformed fibroblasts.
Figure 7: Self-renewal ability and evolution of SSEA-1+-transformed fibroblasts.
Figure 8: Model for reprogramming of somatic cells to CSCs.

Similar content being viewed by others

References

  1. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Fialkow, P. J., Denman, A. M., Jacobson, R. J. & Lowenthal, M. N. Chronic myelocytic leukemia. Origin of some lymphocytes from leukemic stem cells. J. Clin. Invest. 62, 815–823 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez-Caro, M. et al. Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J. 28, 8–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kleinsmith, L. J. & Pierce, G. B. Jr Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  10. Illmensee, K. & Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl Acad. Sci. USA 73, 549–553 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  14. O’Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  PubMed  Google Scholar 

  15. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Son, M. J., Woolard, K., Nam, D. H., Lee, J. & Fine, H. A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4, 440–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Clarke, M. F. et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Ross, D. D. & Nakanishi, T. Impact of breast cancer resistance protein on cancer treatment outcomes. Methods Mol. Biol. 596, 251–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Ward, R. J. et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 69, 4682–4690 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Read, T. A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Rajasekhar, V. K. Analytical methods for cancer stem cells. Methods Mol. Biol. 407, 83–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Rangarajan, A., Hong, S. J., Gifford, A. & Weinberg, R. A. Species- and celltype-specific requirements for cellular transformation. Cancer Cell 6, 171–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Y. et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J. Biol. Chem. 283, 17969–17978 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Clark, A. T. The stem cell identity of testicular cancer. Stem Cell Rev. 3, 49–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, D., Kanai, M., Huang, S. & Xie, K. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27, 23–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Krizhanovsky, V. & Lowe, S. W. Stem cells: the promises and perils of p53. Nature 460, 1085–1086 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corso, C. et al. Molecular cytogenetic insights into the ageing syndrome Hutchinson–Gilford Progeria (HGPS). Cytogenet. Genome Res. 111 (1), 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Holliday, D. L., Hughes, S., Shaw, J. A., Walker, R. A. & Jones, J. L. Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: Matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion. Breast Cancer Res. 9, R67 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell. Biol. 10, 452–459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat. Med. 11, 440–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Lee for instruction in mice injections, K. McKinnon (NCI CCR Vaccine Branch FACS Core Facility) for support with flow cytometry, P. Adams, R. A. Weinberg and L. Li for providing reagents and X. Wu for help with microarray analysis. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), NCI, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

P.S. conceived the study and carried out the experimental work. P.S. and T.M. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Paola Scaffidi or Tom Misteli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1714 kb)

Supplementary Table 1

Supplementary Information (XLSX 37 kb)

Supplementary Table 2

Supplementary Information (XLSX 36 kb)

Supplementary Table 3

Supplementary Information (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaffidi, P., Misteli, T. In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 13, 1051–1061 (2011). https://doi.org/10.1038/ncb2308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2308

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer