Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The AMPK signalling pathway coordinates cell growth, autophagy and metabolism

Subjects

Abstract

One of the central regulators of cellular and organismal metabolism in eukaryotes is AMP-activated protein kinase (AMPK), which is activated when intracellular ATP production decreases. AMPK has critical roles in regulating growth and reprogramming metabolism, and has recently been connected to cellular processes such as autophagy and cell polarity. Here we review a number of recent breakthroughs in the mechanistic understanding of AMPK function, focusing on a number of newly identified downstream effectors of AMPK.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The AMPK signalling pathway.
Figure 2: The Ras/PI3K/mTOR pathways intersect the LKB1/AMPK pathway at multiple points.
Figure 3: AMPK acts as a mitochondrial 'Cash for Clunkers' salvage mechanism.
Figure 4: AMPK controls transcription.

Similar content being viewed by others

References

  1. Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).

    CAS  PubMed  Google Scholar 

  2. Hedbacker, K. & Carlson, M. SNF1/AMPK pathways in yeast. Front Biosci. 13, 2408–2420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bokko, P. B. et al. Diverse cytopathologies in mitochondrial disease are caused by AMP-activated protein kinase signaling. Mol. Biol. Cell 18, 1874–1886 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Narbonne, P. & Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457, 210–214 (2009).

    CAS  PubMed  Google Scholar 

  5. Johnson, E. C. et al. Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS One 5, e12799 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Thelander, M., Olsson, T. & Ronne, H. Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J. 23, 1900–1910 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007).

    CAS  PubMed  Google Scholar 

  8. Hardie, D. G., Carling, D. & Gamblin, S. J. AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. http://dx.doi.org/10.1016/j.tibs.2011.06.004 (2011).

  9. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Oakhill, J. S. et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433–1435 (2011).

    CAS  PubMed  Google Scholar 

  11. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    PubMed  PubMed Central  Google Scholar 

  12. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    CAS  PubMed  Google Scholar 

  13. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    CAS  PubMed  Google Scholar 

  16. Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).

    CAS  PubMed  Google Scholar 

  17. Woods, A. et al. C(Ca2+)/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    CAS  PubMed  Google Scholar 

  18. Fogarty, S. et al. Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem. J. 426, 109–118 (2010).

    CAS  PubMed  Google Scholar 

  19. Xie, M. et al. A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl Acad. Sci. USA 103, 17378–17383 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Herrero-Martin, G. et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salt, I. et al. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334, 177–187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oakhill, J. S. et al. β-subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107, 19237–19241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki, A. et al. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor α gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. Mol. Cell Biol. 27, 4317–4327 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kodiha, M., Rassi, J. G., Brown, C. M. & Stochaj, U. Localization of AMP kinase is regulated by stress, cell density and signaling through the MEK→ERK1/2 pathway. Am. J. Physiol. Cell Physiol. 293, C1427–1436 (2007).

    CAS  PubMed  Google Scholar 

  26. Kazgan, N., Williams, T., Forsberg, L. J. & Brenman, J. E. Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol. Biol. Cell 21, 3433–3442 (2011).

    Google Scholar 

  27. Dorfman, J. & Macara, I. G. STRADα regulates LKB1 localization by blocking access to importin-α, and by association with Crm1 and exportin-7. Mol. Biol. Cell 19, 1614–1626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebbagh, M., Santoni, M. J., Hall, B., Borg, J. P. & Schwartz, M. A. Regulation of LKB1/STRAD localization and function by E-cadherin. Curr. Biol. 19, 37–42 (2009).

    CAS  PubMed  Google Scholar 

  29. Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    CAS  PubMed  Google Scholar 

  30. Tamas, P. et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665–1670 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. Lkb1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    CAS  PubMed  Google Scholar 

  33. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 233, 203–210 (2008).

    CAS  PubMed  Google Scholar 

  36. Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardie, D. G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 131, 973; author reply 974–975 (2006).

    PubMed  Google Scholar 

  38. Hardie, D. G. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47, 185–210 (2007).

    CAS  PubMed  Google Scholar 

  39. Rothbart, S. B., Racanelli, A. C. & Moran, R. G. Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 70, 10299–10309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zang, M. et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180–2191 (2006).

    CAS  PubMed  Google Scholar 

  41. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pacholec, M. et al. SRT1720, SRT2183, SRT1460 and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt, C. GSK/Sirtris compounds dogged by assay artifacts. Nat. Biotechnol. 28, 185–186 (2010).

    CAS  PubMed  Google Scholar 

  44. Canto, C. & Auwerx, J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell. Mol. Life Sci. 67, 3407–3423 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Um, J. H. et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554–563 (2010).

    CAS  PubMed  Google Scholar 

  46. Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    CAS  PubMed  Google Scholar 

  47. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Halseth, A. E., Ensor, N. J., White, T. A., Ross, S. A. & Gulve, E. A. Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem. Biophys. Res. Commun. 294, 798–805 (2002).

    CAS  PubMed  Google Scholar 

  49. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    CAS  PubMed  Google Scholar 

  50. Foretz, M. et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54, 1331–1339 (2005).

    CAS  PubMed  Google Scholar 

  51. Yang, J., Maika, S., Craddock, L., King, J. A. & Liu, Z. M. Chronic activation of AMP-activated protein kinase-α1 in liver leads to decreased adiposity in mice. Biochem. Biophys. Res. Commun. 370, 248–253 (2008).

    CAS  PubMed  Google Scholar 

  52. Zang, M. et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279, 47898–47905 (2004).

    CAS  PubMed  Google Scholar 

  53. Zhang, B. B., Zhou, G. & Li, C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9, 407–416 (2009).

    PubMed  Google Scholar 

  54. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11, 390–401 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamada, Y. et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell Biol. 30, 1049–1058 (2010).

    CAS  PubMed  Google Scholar 

  59. Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J. & Herman, P. K. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl Acad. Sci. USA 106, 17049–17054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  61. Hardie, D. G. AMPK and autophagy get connected. EMBO J. 30, 634–635 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. W., Park, S., Takahashi, Y. & Wang, H. G. The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    CAS  PubMed  Google Scholar 

  65. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Z., Wilson, W. A., Fujino, M. A. & Roach, P. J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell Biol. 21, 5742–5752 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shang, L. et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl Acad. Sci. USA 108, 4788–4793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    CAS  PubMed  Google Scholar 

  70. Liang, J. et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 (2007).

    CAS  PubMed  Google Scholar 

  71. Bjorklund, M. A. et al. Non-CDK-bound p27 (p27(NCDK)) is a marker for cell stress and is regulated through the Akt/PKB and AMPK-kinase pathways. Exp. Cell Res. 316, 762–774 (2010).

    PubMed  Google Scholar 

  72. Zagorska, A. et al. New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci. Signal. 3, ra25 (2010).

    PubMed  Google Scholar 

  73. Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).

    CAS  PubMed  Google Scholar 

  74. Sato, R., Goldstein, J. L. & Brown, M. S. Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc. Natl Acad. Sci. USA 90, 9261–9265 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–37 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Watt, M. J. et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500–508 (2006).

    CAS  PubMed  Google Scholar 

  77. Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    CAS  PubMed  Google Scholar 

  79. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hardie, D. G. Transcription. Targeting the core of transcription. Science 329, 1158–1159 (2010).

    CAS  PubMed  Google Scholar 

  82. Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Um, J. H. et al. Activation of 5´-AMP-activated kinase with diabetes drug metformin induces casein kinase Iɛ (CKIɛ)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282, 20794–20798 (2007).

    CAS  PubMed  Google Scholar 

  84. Um, J. H. et al. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6, e18450 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. & Uyeda, K. Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829–3835 (2002).

    CAS  PubMed  Google Scholar 

  88. Dentin, R., Girard, J. & Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81–86 (2005).

    CAS  PubMed  Google Scholar 

  89. Bricambert, J. et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 120, 4316–4331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tong, X., Zhao, F., Mancuso, A., Gruber, J. J. & Thompson, C. B. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc. Natl Acad. Sci. USA 106, 21660–21665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mair, W. et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404–408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hong, Y. H., Varanasi, U. S., Yang, W. & Leff, T. AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability. J. Biol. Chem. 278, 27495–27501 (2003).

    CAS  PubMed  Google Scholar 

  94. Kim, E. et al. Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity. Diabetes 60, 1493–1503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    PubMed  PubMed Central  Google Scholar 

  96. Inoue, E. & Yamauchi, J. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transcription factor. Biochem. Biophys. Res. Commun. 351, 793–799 (2006).

    CAS  PubMed  Google Scholar 

  97. van der Linden, A. M., Nolan, K. M. & Sengupta, P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26, 358–370 (2007).

    CAS  PubMed  Google Scholar 

  98. Chang, S., Bezprozvannaya, S., Li, S. & Olson, E. N. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc. Natl Acad. Sci. USA 102, 8120–8125 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dequiedt, F. et al. New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol. Cell Biol. 26, 7086–7102 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat. Med. 13, 597–603 (2007).

    CAS  PubMed  Google Scholar 

  101. McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).

    CAS  PubMed  Google Scholar 

  102. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, B. et al. A hormone-dependent module regulating energy balance. Cell 145, 596–606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    CAS  PubMed  Google Scholar 

  106. Greer, E. L. et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  111. Mirouse, V. & Billaud, M. The LKB1/AMPK polarity pathway. FEBS Lett 585, 981–985 (2011).

    CAS  PubMed  Google Scholar 

  112. Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127, 1467–1475 (2000).

    CAS  PubMed  Google Scholar 

  113. Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

    CAS  PubMed  Google Scholar 

  114. Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004).

    CAS  PubMed  Google Scholar 

  115. Jansen, M., Ten Klooster, J. P., Offerhaus, G. J. & Clevers, H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol. Rev. 89, 777–798 (2009).

    CAS  PubMed  Google Scholar 

  116. Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).

    CAS  PubMed  Google Scholar 

  117. Mirouse, V., Swick, L. L., Kazgan, N., St Johnston, D. & Brenman, J. E. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387–392 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, L., Li, J., Young, L. H. & Caplan, M. J. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc. Natl Acad. Sci. USA 103, 17272–17277 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, B. & Cantley, L. C. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc. Natl Acad. Sci. USA 104, 819–822 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, L. et al. AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3β (GSK-3β) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane. J. Biol. Chem. 286, 16879–16890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Miyamoto, T. et al. AMP-activated protein kinase phosphorylates Golgi-specific brefeldin A resistance factor 1 at Thr 1337 to induce disassembly of Golgi apparatus. J. Biol. Chem. 283, 4430–4438 (2008).

    CAS  PubMed  Google Scholar 

  122. Nakano, A. et al. AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nat. Cell Biol. 12, 583–590 (2010).

    CAS  PubMed  Google Scholar 

  123. Choi, J. H. et al. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3, 988–994 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell. Biol. 12, 1115–1122 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Williams, T., Courchet, J., Viollet, B., Brenman, J. E. & Polleux, F. AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc. Natl Acad. Sci. USA 108, 5849–5854 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    CAS  PubMed  Google Scholar 

  127. Nishimura, I., Yang, Y. & Lu, B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116, 671–682 (2004).

    CAS  PubMed  Google Scholar 

  128. Thornton, C., Bright, N. J., Sastre, M., Muckett, P. J. & Carling, D. AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem. J. 434, 503–512 (2011).

    CAS  PubMed  Google Scholar 

  129. Amato, S. et al. AMP-activated protein kinase regulates neuronal polarization by interfering with PI3-kinase localization. Science 332, 247–251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. McDonald, A. et al. Control of insulin granule dynamics by AMPK dependent KLC1 phosphorylation. Islets 1, 198–209 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to apologize for the many primary studies in the AMPK field that could be not covered owing to space limitations. Work in the authors' laboratory is, or has been, funded by the NIH grants R01 DK080425 and 1P01CA120964, an American Cancer Society Research Scholar Award, the American Diabetes Association Junior Faculty Award and a Howard Hughes Medical Institute Early Career Scientist Award. We also thank the Adler Family Foundation and the Leona M. and Harry B. Helmsley Charitable Trust for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben J. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaylova, M., Shaw, R. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13, 1016–1023 (2011). https://doi.org/10.1038/ncb2329

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing