Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytoskeletal polarity mediates localized induction of the heart progenitor lineage

Abstract

Cells must make appropriate fate decisions within a complex and dynamic environment1. In vitro studies indicate that the cytoskeleton acts as an integrative platform for this environmental input2. External signals regulate cytoskeletal dynamics and the cytoskeleton reciprocally modulates signal transduction3,4. However, in vivo studies linking cytoskeleton/signalling interactions to embryonic cell fate specification remain limited5,6,7. Here we show that the cytoskeleton modulates heart progenitor cell fate. Our studies focus on differential induction of heart fate in the basal chordate Ciona intestinalis. We have found that differential induction does not simply reflect differential exposure to the inductive signal. Instead, pre-cardiac cells employ polarized, invasive protrusions to localize their response to an ungraded signal. Through targeted manipulation of the cytoskeletal regulator CDC42, we are able to depolarize protrusive activity and generate uniform heart progenitor fate specification. Furthermore, we are able to restore differential induction by repolarizing protrusive activity. These findings illustrate how bi-directional interactions between intercellular signalling and the cytoskeleton can influence embryonic development. In particular, these studies highlight the potential for dynamic cytoskeletal changes to refine cell fate specification in response to crude signal gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nature and timing of heart progenitor lineage induction.
Figure 2: Localized protrusive activity correlates with localized induction.
Figure 3: Localized CDC42 activity is required for differential induction.
Figure 4: Cytoskeletal polarity directs differential induction.

Similar content being viewed by others

References

  1. Heisenberg, C. P. & Solnica-Krezel, L. Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr. Opin. Genet. Dev. 18, 311–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Vicente-Manzanares, M., Choi, C. K. & Horwitz, A. R. Integrins in cell migration—the actin connection. J. Cell Sci. 122, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajan, A., Tien, A. C., Haueter, C. M., Schulze, K. L. & Bellen, H. J. The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat. Cell Biol. 11, 815–824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava, D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Thisse, B. & Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol 287, 390–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Keegan, B. R., Feldman, J. L., Begemann, G., Ingham, P. W. & Yelon, D. Retinoic acid signaling restricts the cardiac progenitor pool. Science 307, 247–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Satoh, N. The ascidian tadpole larva: comparative molecular development and genomics. Nat. Rev. Genet. 4, 285–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Lemaire, P. Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev. Biol. 332, 48–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Munro, E., Robin, F. & Lemaire, P. Cellular morphogenesis in ascidians: how to shape a simple tadpole. Curr. Opin. Genet. Dev. (2006).

  14. Davidson, B., Shi, W., Beh, J., Christiaen, L. & Levine, M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 20, 2728–2738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imai, K.S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, M. & Kornberg, T. B. FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev. Cell 3, 195–207 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lidke, D. S., Lidke, K. A., Rieger, B., Jovin, T. M. & Arndt-Jovin, D. J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170, 619–626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton. 64, 822–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Etienne-Manneville, S. Cdc42—the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kamiyama, D. & Chiba, A. Endogenous activation patterns of Cdc42 GTPase within Drosophila embryos. Science 324, 1338–1340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, P. J. & Johnson, D. I. Cdc42p GTPase is involved in controlling polarized cell growth in Schizosaccharomyces pombe. Mol. Cell Biol. 14, 1075–1083 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, W. J., Leonard, D. A., Cerione, R. A. & Manor, D. Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J. Biol. Chem. 272, 26153–26158 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Richman, T. J. et al. Analysis of cell-cycle specific localization of the Rdi1p RhoGDI and the structural determinants required for Cdc42p membrane localization and clustering at sites of polarized growth. Curr. Genet. 45, 339–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Padrick, S. B. & Rosen, M. K. Physical mechanisms of signal integration by WASP family proteins. Annu. Rev. Biochem. 79, 707–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Coisy-Quivy, M. et al. Identification of Rho GTPases implicated in terminal differentiation of muscle cells in ascidia. Biol. Cell 98, 577–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schafer, G. et al. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev. Biol. 304, 664–674 (2007).

    Article  PubMed  Google Scholar 

  31. Yu, L., Qi, M., Sheff, M. A. & Elion, E. A. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol. Biol. Cell 19, 1739–1752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuseff, M. I., Lankar, D. & Lennon-Dumenil, A. M. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic 10, 629–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Battista, S. et al. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26, 6194–6207 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nat. Cell Biol. 4, E65–E68 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hagedorn, E. J. et al. Integrin acts upstream of netrin signaling to regulate formation of the anchor cell’s invasive membrane in C. elegans. Dev. Cell 17, 187–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, X. et al. Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion. Dev. Cell 15, 386–400 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Picco, V., Hudson, C. & Yasuo, H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134, 1491–1497 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, W. J., Tu, S. & Cerione, R. A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114, 715–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Corbo, J. C., Levine, M. & Zeller, R. W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602 (1997).

    CAS  PubMed  Google Scholar 

  41. Davidson, B., Shi, W. & Levine, M. Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132, 4811–4818 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hotta, K. et al. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev. Dyn. 236, 1790–1805 (2007).

    Article  PubMed  Google Scholar 

  43. Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349–1352 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Satou, Y et al. A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33, 153–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Beh, J., Shi, W., Levine, M., Davidson, B. & Christiaen, L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134, 3297–3305 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Davidson, B. & Levine, M. Evolutionary origins of the vertebrate heart: Specification of the cardiac lineage in Ciona intestinalis. Proc. Natl Acad. Sci. USA 100, 11469–11473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Passamaneck, Y. J., Hadjantonakis, A. K. & Di Gregorio, A. Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis. PLoS One 2, e714 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Roure, A. et al. A multicassette Gateway vector set for high throughputand comparative analyses in Ciona and vertebrate embryos. PLoS One 2, e916 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Itoh, R. E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karpova, T. S. et al. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209, 56–70 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The ensconsin–GFP construct was generously provided by F. Robin (University of Chicago, USA), the CDC42 constructs by L. Christiaen (New York University, USA), the GPI–GFP construct by A. Gregorio (Weill Medical College of Cornell University, USA) and K. Hadjantonakis (Sloan-Kettering Institute, USA) and the FRET biosensor constructs by M. Matsuda (Osaka University, Japan) and D. Kamiyama (University of Miami, USA); the Rho constructs were designed and tested by J. Norton (University of Arizona). We would also like to thank G. Rogers and D. Buster for their advice and assistance on antibody production, M. Salanga for guidance on FRET imaging, T. Warholac for assistance with statistical analysis and M. Barnet for use of his cooling system for live-embryo imaging. We thank D. Sherwood, H. Granzier, A. Wikramanayake and the members of the U. A. Molecular Cardiovascular Research Program for their input and critical evaluation of the manuscript. Live-embryo imaging was carried out in the facilities of the Biological Imaging Center, under support from the Caltech Beckman Institute and the Beckman Foundation. The work was supported by grants to B.D. from the AHA (0730345N) and NIH (R01HL091027) along with supplemental funding from the American Recovery Act to support J.C. (3R01HL091027-01A1S1) and support for S.W. from the Science Foundation of Arizona.

Author information

Authors and Affiliations

Authors

Contributions

J.C., S.W. and B.D. designed the project and carried out most of the experiments including data analysis. S.F. provided material and technical support for live-cell imaging carried out by S.S., J.C. and B.D. wrote the paper.

Corresponding author

Correspondence to Brad Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1271 kb)

Supplementary Movie 1

Supplementary Information (MOV 428 kb)

Supplementary Movie 2

Supplementary Information (MOV 799 kb)

Supplementary Movie 3

Supplementary Information (MOV 492 kb)

Supplementary Movie 4

Supplementary Information (MOV 2913 kb)

Supplementary Movie 5

Supplementary Information (MOV 5168 kb)

Supplementary Movie 6

Supplementary Information (MOV 6841 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooley, J., Whitaker, S., Sweeney, S. et al. Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol 13, 952–957 (2011). https://doi.org/10.1038/ncb2291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing