Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments

Abstract

Sensory cilia are assembled and maintained by kinesin-2-dependent intraflagellar transport (IFT). We investigated whether two Caenorhabditis elegans α - and β-tubulin isotypes, identified through mutants that lack their cilium distal segments, are delivered to their assembly sites by IFT. Mutations in conserved residues in both tubulins destabilize distal singlet microtubules. One isotype, TBB-4, assembles into microtubules at the tips of the axoneme core and distal segments, where the microtubule tip tracker EB1 is found, and localizes all along the cilium, whereas the other, TBA-5, concentrates in distal singlets. IFT assays, fluorescence recovery after photobleaching analysis and modelling indicate that the continual transport of sub-stoichiometric numbers of these tubulin subunits by the IFT machinery can maintain sensory cilia at their steady-state length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the dyf-6, ift-81, ift-74, tba-5 and tbb-4 mutants.
Figure 2: Expression and localization of two axonemal tubulins, TBA-5 and TBB-4, and characterization of their missense mutations.
Figure 3: Tubulin point mutants are temperature sensitive.
Figure 4: Dynamics of axonemal microtubules at the middle segment and distal segment tips.
Figure 5: Analysis of TBB-4::YFP transport rate in cilia.

Similar content being viewed by others

References

  1. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Insinna, C., Pathak, N., Perkins, B., Drummond, I. & Besharse, J. C. The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev. Biol. 316, 160–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mesland, D. A., Hoffman, J. L., Caligor, E. & Goodenough, U. W. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J. Cell Biol. 84, 599–617 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Moran, D. T., Rowley, J. C. 3rd, Jafek, B. W. & Lovell, M. A. The fine structure of the olfactory mucosa in man. J. Neurocytol. 11, 721–746 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutantsensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q., Pan, J. & Snell, W. J. Intraflagellar transport particles participatedirectly in cilium-generated signaling in Chlamydomonas. Cell 125, 549–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Cole, D. G. et al. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shakir, M. A., Fukushige, T., Yasuda, H., Miwa, J. & Siddiqui, S. S. C. elegans osm-3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein. Neuroreport 4, 891–894 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85, 23–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hao, L & Scholey, J. M. Intraflagellar transport at a glance. J. Cell Sci. 122, 889–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lucker, B. F., Miller, M. S., Dziedzic, S. A., Blackmarr, P. T. & Cole, D. G. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J. Biol. Chem. 285, 21508–21518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 187, 135–148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, K. A. & Rosenbaum, J. L. Polarity of flagellar assembly in Chlamydomonas. J. Cell Biol. 119, 1605–1611 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engel, B. D., Ludington, W. B. & Marshall, W. F. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187, 81–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah, J. V. & Cleveland, D. W. Slow axonal transport: fast motors in the slow lane. Curr. Opin. Cell Biol. 14, 58–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature 436, 583–587 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035–1045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Burghoorn, J. et al. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 7157–7162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jenkins, P. M. et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr. Biol. 16, 1211–1216 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inglis, P. N., Ou, G., Leroux, M. R. & Scholey, J. M. The sensory cilia of Caenorhabditis elegans. WormBook 1–22 (2007).

  26. Fan, Z. C. et al. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol. Biol. Cell 21, 2696–2706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou, G. et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell 18, 1554–1569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobayashi, T., Gengyo-Ando, K., Ishihara, T., Katsura, I. & Mitani, S. IFT-81 and IFT-74 are required for intraflagellar transport in C. elegans. Genes Cells 12, 593–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bell, L. R., Stone, S., Yochem, J., Shaw, J. E. & Herman, R. K. The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1. Genetics 173, 1275–1286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou, Y. et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176, 653–665 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hurd, D. D., Miller, R. M., Nunez, L. & Portman, D. S. Specific α- and β-tubulin isotypes optimize the functions of sensory cilia in Caenorhabditis elegans. Genetics 185, 883–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright, A. J. & Hunter, C. P. Mutations in a β-tubulin disrupt spindle orientation and microtubule dynamics in the early Caenorhabditis elegans embryo. Mol. Biol. Cell 14, 4512–4525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J. 29, 1167–1175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Efimenko, E. et al. Analysis of xbx genes in C. elegans. Development 132, 1923–1934 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Schroder, J. M., Schneider, L., Christensen, S. T. & Pedersen, L. B. EB1 is required for primary cilia assembly in fibroblasts. Curr. Biol. 17, 1134–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 15, 1695–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Jaglin, X. H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41, 746–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nielsen, M. G., Turner, F. R., Hutchens, J. A. & Raff, E. C. Axoneme-specific β-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr. Biol. 11, 529–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimura, S., Murray, J. I., Lu, Y., Waterston, R. H. & Shaham, S. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 135, 2263–2275 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hao, L., Acar, S., Evans, J., Ou, G. & Scholey, J. M. Analysis of intraflagellar transport in C. elegans sensory cilia. Methods Cell Biol. 93, 235–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol. Biol. Cell 10, 345–360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Cheerambathur, D. K., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. J. Cell Biol. 182, 429–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mullineaux, C. W., Nenninger, A., Ray, N. & Robinson, C. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Zhang (Heyer Laboratory), A. Desai and G. Ou for valuable discussion; M. Shohei (Tokyo Women’s Medical University, School of Medicine, Tokyo, Japan) for the deletion mutants, tm2355, tm2394 and tm4200; the Caenorhabditis Genetics Center (funded by the NIH National Center for Research Resources) for strains; and Y. Kohara, Center for Genetic Resource Information, National Institute of Genetics, Japan for EST clones. This work was supported by NIH grant nos GM50718 to J.M.S. and R01NS064273 to S.S.

Author information

Authors and Affiliations

Authors

Contributions

J.M.S is the principal investigator of the grant and laboratory that support this IFT project. L.H. and J.M.S. designed the experiments and drafted the manuscript. J.M.S. wrote the manuscript. L.H. carried out most of the experiments. M.T. characterized the qj14 mutant by crossing all of the used IFT markers into it, made the TBB-4::YFP transgenic worms and carried out the EBP-2 experiments. I.B-M. implemented the stochastic tubulin transport and dynamics model and the in silico FRAP model and analysed the results, and helped with the FRAP experiment and transport assay of TBB-4::YFP and analysis of the results. G.C-S. designed and wrote the stochastic tubulin transport and dynamics model and the in silico FRAP model scripts. Y.L. and S.S. carried out the electron microscopy studies and analysed the results. S.A. and B.P. carried out the Y2H assays. All of the authors read the manuscript.

Corresponding author

Correspondence to Jonathan M. Scholey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1294 kb)

Supplementary Information

Supplementary Table 1 (XLS 36 kb)

Supplementary Information

Supplementary Table 2 (XLS 47 kb)

Supplementary Information

Supplementary Table 3 (XLS 38 kb)

Supplementary Information

Supplementary Table 4 (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Thein, M., Brust-Mascher, I. et al. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13, 790–798 (2011). https://doi.org/10.1038/ncb2268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing