Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A kinase-independent role for Aurora A in the assembly of mitotic spindle microtubules in Caenorhabditis elegans embryos

Abstract

The assembly of a functional mitotic spindle is crucial for achieving successful mitosis. Aurora A kinase is one of the key regulators of mitotic events, including mitotic entry, centrosome maturation and spindle bipolarity1,2. Caenorhabditis elegans Aurora A (AIR-1) is responsible for the assembly of γ-tubulin-independent microtubules in early embryos3; however, the mechanism by which AIR-1 contributes to microtubule assembly during mitosis has been unclear. Here we show by live-cell imaging and RNA-mediated interference (RNAi)-based modulation of gene activity that AIR-1 has a crucial role in the assembly of chromatin-stimulated microtubules that is independent of the γ-tubulin complex. Surprisingly, the kinase activity of AIR-1 is dispensable for this process. Although the kinase-inactive form of AIR-1 was detected along the microtubules as well as on centrosomes, the kinase-active form of AIR-1 was restricted to centrosomes. Thus, we propose that AIR-1 has a kinase-dependent role at centrosomes and a kinase-independent role for stabilizing spindle microtubules and that coordination of these two roles is crucial for the assembly of mitotic spindles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the assembly of microtubules in tbg-1(RNAi) and air-1(RNAi) embryos.
Figure 2: AIR-1 is required for chromatin-stimulated microtubule assembly.
Figure 3: Localization of AIR-1 along chromatin-stimulated microtubules and around condensed chromosomes.
Figure 4: Localization of the kinase-active form of AIR-1.
Figure 5: Contribution of the kinase-inactive form of AIR-1 to the spindle microtubule assembly.

Similar content being viewed by others

References

  1. Barr, A. R. & Gergely, F. Aurora-A: the maker and breaker of spindle poles. J. Cell Sci. 120, 2987–2996 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Carmena, M., Ruchaud, S. & Earnshaw, W. C. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr. Opin. Cell Biol. 21, 796–805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motegi, F., Velarde, N. V., Piano, F. & Sugimoto, A. Two phases of astral microtubule activity during cytokinesis in C. elegans embryos. Dev. Cell 10, 509–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell. Biol. 157, 591–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strome, S. et al. Spindle dynamics and the role of γ-tubulin in early Caenorhabditis elegans embryos. Mol. Biol. Cell. 12, 1751–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bobinnec, Y., Fukuda, M. & Nishida, E. Identification and characterization of Caenorhabditis elegans γ-tubulin in dividing cells and differentiated tissues. J. Cell. Sci. 113, 3747–3759 (2000).

    CAS  PubMed  Google Scholar 

  8. Toya, M., Iida, Y. & Sugimoto, A. Imaging of mitotic spindle dynamics in Caenorhabditis elegans embryos. Methods Cell. Biol. 97, 359–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Karsenti, E., Newport, J. & Kirschner, M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, 47s–54s (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Tsai, M. Y. & Zheng, Y. Aurora A kinase-coated beads function as microtubule-organizing centres and enhance RanGTP-induced spindle assembly. Curr. Biol. 15, 2156–2163 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Koffa, M. D. et al. HURP is part of a Ran-dependent complex involved in spindle formation. Curr. Biol. 16, 743–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Schumacher, J. M., Ashcroft, N., Donovan, P. J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125, 4391–4402 (1998).

    CAS  PubMed  Google Scholar 

  16. Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Littlepage, L. E. et al. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc. Natl Acad. Sci. USA 99, 15440–15445 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohashi, S. et al. Phospho-regulation of human protein kinase Aurora-A: analysis using anti-phospho-Thr288 monoclonal antibodies. Oncogene 25, 7691–7702 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Haydon, C. E. et al. Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol. Cell. Proteomics 2, 1055–1067 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Eyers, P. A. & Maller, J. L. Regulation of Xenopus Aurora A activation by TPX2. J. Biol. Chem. 279, 9008–9015 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Green, R. A. et al. Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol. 85, 179–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ozlü, N. et al. An essential function of the C. elegans ortholog of TPX2 is to localize activated aurora A kinase to mitotic spindles. Dev. Cell 9, 237–248 (2005).

    Article  PubMed  Google Scholar 

  24. O’Toole, E. T. et al. Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J. Cell Biol. 163, 451–456 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boudeau, J., Miranda-Saavedra, D., Barton, G. J. & Alessi, D. R. Emerging roles of pseudokinases. Trends Cell Biol. 16, 443–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Abeliovich, H., Zhang, C., Dunn, W. A. Jr, Shokat, K. M. & Klionsky, D. J. Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol. Biol. Cell 14, 477–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585–598 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Motegi, M. Sato and R. E. Carazo-Salas for discussion and critically reading the manuscript. We also thank Y. Kohara, A. A. Hyman, A. Audya and K. Oegema for reagents and T. Toda and M. Mishima for helpful comments. We are grateful to the Sugimoto Laboratory members for their support. This work was supported by MEXT KAKENHI 17017038 and JSPS KAKENHI 19671003 to A.S. and by JSPS KAKENHI 21570209 to M. Toya. M. Toya is a RIKEN Special Postdoctoral Researcher. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Contributions

M. Toya and A.S. designed the research; M. Toya carried out RNAi, imaging analyses and phenotype characterization; M. Terasawa carried out AIR-1 protein production and kinase assays; K.N. contributed to plasmid construction and biochemical experiments; Y.I. contributed to RNAi experiments and construction of transgenic lines; M. Toya and A.S. wrote the paper; A.S. supervised the study and finalized the manuscript.

Corresponding author

Correspondence to Asako Sugimoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2068 kb)

Supplementary Information

Supplementary Table 1 (XLS 15 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3169 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2241 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2528 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2136 kb)

Supplementary Information

Supplementary Movie 5 (MOV 3653 kb)

Supplementary Information

Supplementary Movie 6 (MOV 3252 kb)

Supplementary Information

Supplementary Movie 7 (MOV 3489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toya, M., Terasawa, M., Nagata, K. et al. A kinase-independent role for Aurora A in the assembly of mitotic spindle microtubules in Caenorhabditis elegans embryos. Nat Cell Biol 13, 708–714 (2011). https://doi.org/10.1038/ncb2242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing