Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exocyst function regulated by effector phosphorylation

Abstract

The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that, after recognition of the exocyst by activated RalA, disengagement occurs through phosphorylation of its effector Sec5, rather than RalA inactivation. Sec5 undergoes phosphorylation in the G-protein binding domain, allosterically reducing RalA interaction. The phosphorylation event is catalysed by protein kinase C and is reversed by an exocyst-associated phosphatase. Introduction of Sec5 bearing mutations of the phosphorylation site to either alanine or aspartate disrupts insulin-stimulated Glut4 exocytosis, as well as other trafficking processes in polarized epithelial cells and during development of zebrafish embryos. The exocyst thus serves as a ‘gatekeeper’ for exocytic vesicles through a circuit of engagement, disengagement and re-engagement with G proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RalA promotes exocyst function independently of GTP hydrolysis.
Figure 2: The RalA-interacting exocyst subunit Sec5 undergoes hormone-stimulated phosphorylation in its effector domain.
Figure 3: Sec5 effector-domain phosphorylation disengages the G protein RalA during vesicle targeting.
Figure 4: PKC catalyses Sec5 effector-domain phosphorylation, which negatively regulates RalA interaction.
Figure 5: Sec5 phosphorylation contributes to a cyclic regulatory loop on recognition by RalA.
Figure 6: Sec5 phosphorylation contributes to cellular organization and organism development.
Figure 7: Proposed model describing the role of the cyclic phosphorylation of Sec5 in an engagement–disengagement cycle between the exocyst and its upstream G protein.

Similar content being viewed by others

References

  1. Munson, M. & Novick, P. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13, 577–581 (2006).

    Article  CAS  Google Scholar 

  2. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  3. Grote, E., Carr, C. M. & Novick, P. J. Ordering the final events in yeast exocytosis. J. Cell Biol. 151, 439–452 (2000).

    Article  CAS  Google Scholar 

  4. Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol. 12, 247–249 (2002).

    CAS  PubMed  Google Scholar 

  5. Inoue, M., Chang, L., Hwang, J., Chiang, S. H. & Saltiel, A. R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422, 629–633 (2003).

    Article  CAS  Google Scholar 

  6. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  Google Scholar 

  7. Chen, X. W., Leto, D., Chiang, S. H., Wang, Q. & Saltiel, A. R. Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev. Cell 13, 391–404 (2007).

    Article  CAS  Google Scholar 

  8. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nat. Cell Biol. 4, 66–72 (2002).

    Article  CAS  Google Scholar 

  9. Moskalenko, S. et al. Ral GTPases regulate exocyst assembly through dual subunit interactions. J. Biol. Chem. 278, 51743–51748 (2003).

    Article  CAS  Google Scholar 

  10. Jin, R. et al. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J. 24, 2064–2074 (2005).

    Article  CAS  Google Scholar 

  11. Fukai, S., Matern, H. T., Jagath, J. R., Scheller, R. H. & Brunger, A. T. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J. 22, 3267–3278 (2003).

    Article  CAS  Google Scholar 

  12. Chen, X. W., Inoue, M., Hsu, S. C. & Saltiel, A. R. RalA–exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J. Biol. Chem. 281, 38609–38616 (2006).

    Article  CAS  Google Scholar 

  13. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  14. Feig, L. A. Ral-GTPases: approaching their 15 min of fame. Trends Cell Biol. 13, 419–425 (2003).

    Article  CAS  Google Scholar 

  15. Shipitsin, M. & Feig, L. A. RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol. Cell Biol. 24, 5746–5756 (2004).

    Article  CAS  Google Scholar 

  16. Boyd, C., Hughes, T., Pypaert, M. & Novick, P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901 (2004).

    Article  CAS  Google Scholar 

  17. Antonny, B. & Schekman, R. ER export: public transportation by the COPII coach. Curr. Opin. Cell Biol. 13, 438–443 (2001).

    Article  CAS  Google Scholar 

  18. Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537 (2001).

    Article  CAS  Google Scholar 

  19. Ewart, M. A., Clarke, M., Kane, S., Chamberlain, L. H. & Gould, G. W. Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3T3-L1 adipocytes. J. Biol. Chem. 280, 3812–3816 (2005).

    Article  CAS  Google Scholar 

  20. Inoue, M., Chiang, S. H., Chang, L., Chen, X. W. & Saltiel, A. R. Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol. Biol. Cell. 17, 2303–2311 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mott, H. R. et al. Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site. J. Biol. Chem. 278, 17053–17059 (2003).

    Article  CAS  Google Scholar 

  22. Spiczka, K. S. & Yeaman, C. Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration. J. Cell Sci. 121, 2880–2891 (2008).

    Article  CAS  Google Scholar 

  23. Ikenoue, T., Inoki, K., Yang, Q., Zhou, X. & Guan, K. L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27, 1919–1931 (2008).

    Article  CAS  Google Scholar 

  24. Zuo, X. et al. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 8, 1383–1388 (2006).

    Article  CAS  Google Scholar 

  25. Lim, J. E. et al. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat. Genet. 37, 1270–1273 (2005).

    Article  CAS  Google Scholar 

  26. Friedrich, G. A., Hildebrand, J. D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997).

    Article  CAS  Google Scholar 

  27. Murthy, M., Garza, D., Scheller, R. H. & Schwarz, T. L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    Article  CAS  Google Scholar 

  28. Chieregatti, E. & Meldolesi, J. Regulated exocytosis: new organelles for non-secretory purposes. Nat. Rev. Mol. Cell Biol. 6, 181–187 (2005).

    Article  CAS  Google Scholar 

  29. Jahn, R. & Sudhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  30. Hsu, S. C., TerBush, D., Abraham, M. & Guo, W. The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 233, 243–265 (2004).

    Article  CAS  Google Scholar 

  31. Wiederkehr, A., De Craene, J. O., Ferro-Novick, S. & Novick, P. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p. J. Cell Biol. 167, 875–887 (2004).

    Article  CAS  Google Scholar 

  32. Novick, P. et al. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem. Soc. Trans. 34, 683–686 (2006).

    Article  CAS  Google Scholar 

  33. Chen, X. W. & Saltiel, A. R. TIRFing out studies on Glut4 trafficking. Dev. Cell 12, 4–5 (2007).

    Article  CAS  Google Scholar 

  34. Griner, E. M. & Kazanietz, M. G. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 7, 281–294 (2007).

    Article  CAS  Google Scholar 

  35. Morgan, A. et al. Regulation of exocytosis by protein kinase C. Biochem. Soc. Trans. 33, 1341–1344 (2005).

    Article  CAS  Google Scholar 

  36. Newton, A. C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    Article  CAS  Google Scholar 

  37. Polzin, A., Shipitsin, M., Goi, T., Feig, L. A. & Turner, T. J. Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol. Cell Biol. 22, 1714–1722 (2002).

    Article  CAS  Google Scholar 

  38. Gillis, K. D., Mossner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  Google Scholar 

  39. Rosse, C. et al. An aPKC–exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol. 7, e1000235 (2009).

    Article  Google Scholar 

  40. Chen, X. W. et al. A Ral GAP complex links PI 3-kinase/Akt signalling to RalA activation in insulin action. Mol. Biol. Cell 22, 141–152.

    Article  CAS  Google Scholar 

  41. Huang, S. & Czech, M. P. The GLUT4 glucose transporter. Cell Metab. 5, 237–252 (2007).

    Article  CAS  Google Scholar 

  42. Saltiel, A. R. & Pessin, J. E. Insulin signalling pathways in time and space. Trends Cell Biol. 12, 65–71 (2002).

    CAS  PubMed  Google Scholar 

  43. Liu, J., DeYoung, S. M., Zhang, M., Cheng, A. & Saltiel, A. R. Changes in integrin expression during adipocyte differentiation. Cell Metab. 2, 165–177 (2005).

    Article  Google Scholar 

  44. Buchner, D. A. et al. pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc. Natl Acad. Sci. USA 104, 13996–14001 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by NIH RO1 DK061618 and DK076906 to A.R.S., and P60 DK020572 to the Diabetes Research and Training Center at the University of Michigan. D.G. is an investigator of Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.W.C., D.L., J.X., J.G., Q.W., T.X. and G.Y. carried out experiments; X.W.C., J.A.S., D.G., D.T., Z.X. and A.R.S. analysed the data; X.W.C., Q.W., D.G., D.T., Z.X. and A.R.S. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Alan R. Saltiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1422 kb)

Supplementary Movie 1

Supplementary Information (MOV 1291 kb)

Supplementary Movie 2

Supplementary Information (MOV 2334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XW., Leto, D., Xiao, J. et al. Exocyst function regulated by effector phosphorylation. Nat Cell Biol 13, 580–588 (2011). https://doi.org/10.1038/ncb2226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing