Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TFG-1 function in protein secretion and oncogenesis

This article has been updated

Abstract

Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C. elegans TFG-1 interacts with the endoplasmic reticulum exit-site component SEC-16.
Figure 2: TFG-1 localizes to endoplasmic reticulum exit sites that are juxtaposed to the Golgi.
Figure 3: TFG-1 regulates SEC-16 levels on endoplasmic reticulum exit sites.
Figure 4: The N terminus of TFG-1 mediates its oligomerization.
Figure 5: TFG-1 is required for COPII recruitment and protein secretion.
Figure 6: Human TFG functions at endoplasmic reticulum exit sites and binds to Sec16.
Figure 7: Targeting of the NTRK1 kinase domain to endoplasmic reticulum exit sites is sufficient to activate NTRK1-mediated downstream signalling.

Similar content being viewed by others

Change history

  • 11 April 2011

    In the version of this Article initially published online, the title was incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  Google Scholar 

  2. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  3. Bickford, L. C., Mossessova, E. & Goldberg, J. A structural view of the COPII vesicle coat. Curr. Opin. Struct. Biol. 14, 147–153 (2004).

    Article  CAS  Google Scholar 

  4. Dancourt, J. & Barlowe, C. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79, 777–802 (2010).

    Article  CAS  Google Scholar 

  5. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38, 1192–1197 (2006).

    Article  CAS  Google Scholar 

  6. Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R. & Knapik, E. W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat. Genet. 38, 1198–1203 (2006).

    Article  CAS  Google Scholar 

  7. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  Google Scholar 

  8. Miller, E. A. & Barlowe, C. Regulation of coat assembly—sorting things out at the ER. Curr. Opin. Cell Biol. 22, 447–453 (2010).

    Article  CAS  Google Scholar 

  9. Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).

    Article  CAS  Google Scholar 

  10. Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).

    Article  CAS  Google Scholar 

  11. Bi, X., Mancias, J. D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645 (2007).

    Article  CAS  Google Scholar 

  12. Espenshade, P., Gimeno, R. E., Holzmacher, E., Teung, P. & Kaiser, C. A. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J. Cell Biol. 131, 311–323 (1995).

    Article  CAS  Google Scholar 

  13. Gimeno, R. E., Espenshade, P. & Kaiser, C. A. COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol. Biol. Cell 7, 1815–1823 (1996).

    Article  CAS  Google Scholar 

  14. Shaywitz, D. A., Espenshade, P. J., Gimeno, R. E. & Kaiser, C. A. COPII subunit interactions in the assembly of the vesicle coat. J. Biol. Chem. 272, 25413–25416 (1997).

    Article  CAS  Google Scholar 

  15. Whittle, J. R. & Schwartz, T. U. Structure of the Sec13–Sec16 edge element, a template for assembly of the COPII vesicle coat. J. Cell Biol. 190, 347–361 (2010).

    Article  CAS  Google Scholar 

  16. Supek, F., Madden, D. T., Hamamoto, S., Orci, L. & Schekman, R. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J. Cell Biol. 158, 1029–1038 (2002).

    Article  CAS  Google Scholar 

  17. Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005).

    Article  CAS  Google Scholar 

  18. Shi, A. et al. EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol. Biol. Cell 21, 2930–2943 (2010).

    Article  CAS  Google Scholar 

  19. Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 (2002).

    Article  CAS  Google Scholar 

  20. Hughes, H. et al. Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER. J. Cell Sci. 122, 2924–2934 (2009).

    Article  CAS  Google Scholar 

  21. Greco, A. et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol. Cell Biol. 15, 6118–6127 (1995).

    Article  CAS  Google Scholar 

  22. Hernandez, L. et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 94, 3265–3268 (1999).

    CAS  PubMed  Google Scholar 

  23. Schecterson, L. C. & Bothwell, M. Neurotrophin receptors: old friends with new partners. Dev. Neurobiol. 70, 332–338 (2010).

    CAS  PubMed  Google Scholar 

  24. Klesse, L. J. & Parada, L. F. Trks: signal transduction and intracellular pathways. Microsc. Res. Tech. 45, 210–216 (1999).

    Article  CAS  Google Scholar 

  25. Greco, A. et al. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene 16, 809–816 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, F., Kartner, N. & Lukacs, G. L. Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR. Nat. Struct. Biol. 5, 180–183 (1998).

    Article  CAS  Google Scholar 

  27. Trzcinska-Daneluti, A. M. et al. High-content functional screen to identify proteins that correct F508del-CFTR function. Mol. Cell Proteomics. 8, 780–790 (2009).

    Article  CAS  Google Scholar 

  28. Heinzer, S., Worz, S., Kalla, C., Rohr, K. & Weiss, M. A model for the self-organization of exit sites in the endoplasmic reticulum. J. Cell Sci. 121, 55–64 (2008).

    Article  CAS  Google Scholar 

  29. Farhan, H., Weiss, M., Tani, K., Kaufman, R. J. & Hauri, H. P. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J. 27, 2043–2054 (2008).

    Article  CAS  Google Scholar 

  30. Hughes, H. & Stephens, D. J. Assembly, organization, and function of the COPII coat. Histochem. Cell Biol. 129, 129–151 (2008).

    Article  CAS  Google Scholar 

  31. Farhan, H. et al. MAPK signalling to the early secretory pathway revealed by kinase/phosphatase functional screening. J. Cell Biol. 189, 997–1011 (2010).

    Article  CAS  Google Scholar 

  32. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  Google Scholar 

  33. Audhya, A. et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J. Cell Biol. 171, 267–279 (2005).

    Article  CAS  Google Scholar 

  34. Sato, K. et al. Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol. Biol. Cell 17, 3085–3094 (2006).

    Article  CAS  Google Scholar 

  35. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  36. Rostaing, P. et al. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci. 24, 3463–3474 (2006).

    Article  Google Scholar 

  37. Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–223 (1963).

    Article  CAS  Google Scholar 

  38. Fiala, J. C. Reconstruct: a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).

    Article  CAS  Google Scholar 

  39. Perlaky, L. et al. Increased growth of NIH/3T3 cells by transfection with human p120 complementary DNA and inhibition by a p120 antisense construct. Cancer Res. 52, 428–436 (1992).

    CAS  PubMed  Google Scholar 

  40. Saito, K. et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136, 891–902 (2009).

    Article  CAS  Google Scholar 

  41. Diop, S. B. et al. Reptin and pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control. EMBO Rep. 9, 260–266 (2006).

    Article  Google Scholar 

  42. Eng, J., McCormack, A. & Yates, J. R. III An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 979–989 (1994).

    Article  Google Scholar 

  43. Siegel, L. M. & Monty, K. J. Determination of molecular weights and frictional rations of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta 112, 346–362 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH (1R01GM088151-01A1 to A.A. and P41RR011823 to J.R.Y.). We thank B. Weaver and P. Bertics for use of tissue culture facilities, R. Landick for use of a Gradient Master, K. Oegema for marker strains and antibodies, E. Chapman for use of Metamorph software and S. Koenig for help with RNAi. We also thank D. Stephens, P. Kiley and members of the Audhya laboratory for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.W., A.L.S., S.E. and A.A. conceived and designed experiments. K.W., A.L.S., A.S., J.H., J.R.M., K.S., S.E. and A.A. carried out experiments and analysed data. S.E., J.R.Y. and A.A. contributed reagents, materials and analysis tools. A.A. wrote the paper.

Corresponding author

Correspondence to Anjon Audhya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1432 kb)

Supplementary Movie 1

Supplementary Information (WMV 1443 kb)

Supplementary Movie 2

Supplementary Information (MOV 3094 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, K., Schuh, A., Hegermann, J. et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 13, 550–558 (2011). https://doi.org/10.1038/ncb2225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing