Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism

Abstract

The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143–145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143–ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dysregulated expression of the miR-143–145 cluster in insulin target tissues of obese and diabetic mice.
Figure 2: Conditional overexpression of miR-143 in mice.
Figure 3: Impaired glucose metabolism in miR-143-overexpressing mice.
Figure 4: Conditional overexpression of LacZ shRNA or miR-145 does not impair glucose homeostasis.
Figure 5: Conditional miR-143 overexpression impairs insulin-stimulated AKT activation in liver.
Figure 6: miR-143–145-deficient mice are protected from diet-induced insulin resistance and hepatic AKT inhibition.
Figure 7: In vivo SILAC identifies ORP8 as an miR-143 target.
Figure 8: Downregulation of ORP8 in cultured liver cells impairs insulin-stimulated AKT activation.

Similar content being viewed by others

References

  1. Mokdad, A. H. et al. The continuing increase of diabetes in the US. Diabetes Care 24, 412 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Froguel, P., Velho, G., Passa, P. & Cohen, D. Genetic determinants of type 2 diabetes mellitus: lessons learned from family studies. Diabete Metab. 19, 1–10 (1993).

    CAS  PubMed  Google Scholar 

  3. Bruning, J. C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, B. C. et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340, 925–929 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Kahn, C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066–1084 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Moller, D. E., Yokota, A., White, M. F., Pazianos, A. G. & Flier, J. S. A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. J. Biol. Chem. 265, 14979–14985 (1990).

    CAS  PubMed  Google Scholar 

  7. Almind, K. et al. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet 342, 828–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Lancet Dev. 19, 2435–2446 (2005).

    Article  CAS  Google Scholar 

  10. Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M. F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem. 275, 9047–9054 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhande, R., Mitchell, J. J., Wu, J. & Sun, X. J. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol. Cell Biol. 22, 1016–1026 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Poy, M. N., Spranger, M. & Stoffel, M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes. Metab. 9 (Suppl 2), 67–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coleman, D. L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in d b/d b mice. Cell 84, 491–495 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gangaraju, V. K. & Lin, H. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10, 116–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seibler, J. et al. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koch, L. et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J. Clin. Invest. 118, 2132–2147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leavens, K. F., Easton, R. M., Shulman, G. I., Previs, S. F. & Birnbaum, M. J. Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab. 10, 405–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361–52365 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).

    Article  PubMed  Google Scholar 

  30. Yan, D. et al. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J. Biol. Chem. 283, 332–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Rusinol, A. E. et al. AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J. Biol. Chem. 279, 1392–1399 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Vejux, A. et al. Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J. Nutr. Biochem. 20, 45–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Xie, H., Lim, B. & Lodish, H. F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58, 1050–1057 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takanabe, R. et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun. 376, 728–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Li, S. et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J. Lipid Res. 50, 1756–1765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gallagher, I.J. et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2, 9 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xin, M. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, L. et al. Prevalence, incidence and risk factors of chronic heart failure in the type 2 diabetic population: systematic review. Curr. Diabetes Rev. 5, 171–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003).

    CAS  PubMed  Google Scholar 

  43. Slaby, O. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72, 397–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Akao, Y., Nakagawa, Y., Kitade, Y., Kinoshita, T. & Naoe, T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 98, 1914–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Clape, C. et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Whiteman, E. L., Cho, H. & Birnbaum, M. J. Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Toker, A. & Yoeli-Lerner, M. Akt signaling and cancer: surviving but not moving on. Cancer Res. 66, 3963–3966 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, J., Netherland, C., Pickle, T., Sinensky, M. S. & Thewke, D. P. Stimulation of Akt poly-ubiquitination and proteasomal degradation in P388D1 cells by 7-ketocholesterol and 25-hydroxycholesterol. Arch. Biochem. Biophys. 487, 54–58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olkkonen, V. M. et al. The OSBP-related proteins (ORPs): global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes? Biochem. Soc. Trans. 34, 389–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, P. Y., Weng, J. & Anderson, R. G. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307, 1472–1476 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ugi, S. et al. Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol. Cell Biol. 24, 8778–8789 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfeffer, S., Lagos-Quintana, M. & Tuschl, T. Current Protocols in Molecular Biology Vol. 24 (2005).

    Google Scholar 

  54. Konner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    Article  PubMed  Google Scholar 

  55. Plum, L. et al. Enhanced leptin-stimulated Pi3k activation in the CNS promotes white adipose tissue transdifferentiation. Cell Metab. 6, 431–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Mauer, J. et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet. 6, e1000938 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Schmall and T. Rayle for secretarial assistance and B. Hampel, S. Irlenbusch and J. Alber for technical assistance. We thank B. Schumacher, M. C. Vogt and P. Frommolt for support with the bioinformatics analysis of gene expression and SILAC data. This work was supported by the ZMMK (J.C.B.), the European Community’s Seventh Framework Programme (grant FP7/2007–2013, no 201608 to J.C.B.), the DFG (grant 1492-7 to J.C.B.), the Academy of Finland (grant 121457 to V.M.O.) and the Sigrid Juselius Foundation (V.M.O.).

Author information

Authors and Affiliations

Authors

Contributions

S.D.J. and J.C.B. designed the research; S.D.J. carried out most of the experiments; M.K. carried out in vivo SILAC analyses; D.M.W. and N.R. provided extra technical assistance; F.T.W. helped to design cloning strategies; H.S.B. analysed energy expenditure in miR-143DOX mice; C.M. carried out luciferase assays; H.K. helped with lentivirus experiments; V.M.O. provided ORP8 antibody and shRNA ORP8 lentiviruses. T. Böttger and T. Braun provided miR143–145 knockout mice; J.S. in part generated miR-143DOX and miR-145DOX mice and provided LacZ shRNADOX mice. S.D.J. and J.C.B. wrote the manuscript. All authors participated in the interpretation of the data and production of the final manuscript.

Corresponding author

Correspondence to Jens C. Brüning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 801 kb)

Supplementary Table 2

Supplementary Information (PDF 62 kb)

Supplementary Table 4

Supplementary Information (PDF 81 kb)

Supplementary Table 1

Supplementary Information (XLS 99 kb)

Supplementary Table 3

Supplementary Information (XLS 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, S., Krüger, M., Willmes, D. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13, 434–446 (2011). https://doi.org/10.1038/ncb2211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing