Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of PKA stability and signalling by the RING ligase praja2

This article has been updated

Abstract

Activation of G-protein-coupled receptors (GPCRs) mobilizes compartmentalized pulses of cyclic AMP. The main cellular effector of cAMP is protein kinase A (PKA), which is assembled as an inactive holoenzyme consisting of two regulatory (R) and two catalytic (PKAc) subunits. cAMP binding to R subunits dissociates the holoenzyme and releases the catalytic moiety, which phosphorylates a wide array of cellular proteins. Reassociation of PKAc and R components terminates the signal. Here we report that the RING ligase praja2 controls the stability of mammalian R subunits. Praja2 forms a stable complex with, and is phosphorylated by, PKA. Rising cAMP levels promote praja2-mediated ubiquitylation and subsequent proteolysis of compartmentalized R subunits, leading to sustained substrate phosphorylation by the activated kinase. Praja2 is required for efficient nuclear cAMP signalling and for PKA-mediated long-term memory. Thus, praja2 regulates the total concentration of R subunits, tuning the strength and duration of PKA signal output in response to cAMP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Praja2 binds to PKA R subunits.
Figure 2: Praja2 co-localizes with PKA R subunits.
Figure 3: Praja2 triggers degradation of R subunits.
Figure 4: Praja2 ubiquitylates RIIα/β subunits.
Figure 5: PKAc binds to and phosphorylates praja2.
Figure 6: Praja2 controls PKA signalling in cells.
Figure 7: Praja2 controls PKA signalling and LTP in rat brain.
Figure 8: Schematic representation of the role of praja2 in PKA signalling.

Similar content being viewed by others

Change history

  • 22 March 2011

    In the version of this article initially published online Figures 2, 4 and 5 were mislabelled, and on page 5 line 21 a sentence has now been reworded for clarity.

References

  1. Taylor, S. S. et al. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim. Biophys. Acta 1784, 16–26 (2008).

    Article  CAS  Google Scholar 

  2. Amieux, P. S. & McKnight, G. S. The essential role of RI α in the maintenance of regulated PKA activity. Ann. NY Acad. Sci. 968, 75–95 (2002).

    Article  CAS  Google Scholar 

  3. Feliciello, A., Gottesman, M. E. & Avvedimento, E. V. The biological functions of A-kinase anchor proteins. J. Mol. Biol. 308, 99–114 (2001).

    Article  CAS  Google Scholar 

  4. Tasken, K. & Aandahl, E. M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 84, 137–167 (2004).

    Article  CAS  Google Scholar 

  5. Beene, D. L. & Scott, J. D. A-kinase anchoring proteins take shape. Curr. Opin. Cell Biol. 19, 192–198 (2007).

    Article  CAS  Google Scholar 

  6. Dell’Acqua, M. L. et al. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 85, 627–633 (2006).

    Article  Google Scholar 

  7. Dessauer, C. W. Adenylyl cyclase–A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol. Pharmacol. 76, 935–941 (2009).

    Article  CAS  Google Scholar 

  8. Zhong, H. et al. Subcellular dynamics of type II PKA in neurons. Neuron 62, 363–374 (2009).

    Article  CAS  Google Scholar 

  9. Carlucci, A., Lignitto, L. & Feliciello, A. Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. Trends Cell Biol. 18, 604–613 (2008).

    Article  CAS  Google Scholar 

  10. Tunquist, B. J. et al. Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc. Natl Acad. Sci. USA 105, 12557–12562 (2008).

    Article  CAS  Google Scholar 

  11. Feliciello, A., Li, Y., Avvedimento, E. V., Gottesman, M. E. & Rubin, C. S. A-kinase anchor protein 75 increases the rate and magnitude of cAMP signaling to the nucleus. Curr. Biol. 7, 1011–1014 (1997).

    Article  CAS  Google Scholar 

  12. Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).

    Article  CAS  Google Scholar 

  13. Feliciello, A., Gottesman, M. E. & Avvedimento, E. V. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal. 17, 279–287 (2005).

    Article  CAS  Google Scholar 

  14. Gomez, L. L., Alam, S., Smith, K. E., Horne, E. & Dell’Acqua, M. L. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J. Neurosci. 22, 7027–7044 (2002).

    Article  CAS  Google Scholar 

  15. Houslay, M. D. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci. 35, 91–100 (2010).

    Article  CAS  Google Scholar 

  16. Willoughby, D., Wong, W., Schaack, J., Scott, J. D. & Cooper, D. M. An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J. 25, 2051–2061 (2006).

    Article  CAS  Google Scholar 

  17. Smith, F. D. et al. AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade. Nat. Cell Biol. 12, 1242–1249 (2010).

    Article  CAS  Google Scholar 

  18. Jurado, S., Biou, V. & Malenka, R. C. A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression. Nat. Neurosci. 13, 1053–1055 (2010).

    Article  CAS  Google Scholar 

  19. Mauban, J. R., O’Donnell, M., Warrier, S., Manni, S. & Bond, M. AKAP-scaffolding proteins and regulation of cardiac physiology. Physiology (Bethesda) 24, 78–87 (2009).

    CAS  Google Scholar 

  20. Bhattacharyya, S., Biou, V., Xu, W., Schluter, O. & Malenka, R. C. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat. Neurosci. 12, 172–181 (2009).

    Article  CAS  Google Scholar 

  21. Lim, C. J. et al. α4 integrins are type I cAMP-dependent protein kinase-anchoring proteins. Nat. Cell Biol. 9, 415–421 (2007).

    Article  CAS  Google Scholar 

  22. Carlucci, A. et al. Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia. EMBO J. 27, 1073–1084 (2008).

    Article  CAS  Google Scholar 

  23. Huang, Y. Y. & Kandel, E. R. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Mem. 1, 74–82 (1994).

    CAS  PubMed  Google Scholar 

  24. Chain, D. G. et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22, 147–156 (1999).

    Article  CAS  Google Scholar 

  25. Chain, D. G., Hegde, A. N., Yamamoto, N., Liu-Marsh, B. & Schwartz, J. H. Persistent activation of cAMP-dependent protein kinase by regulated proteolysis suggests a neuron-specific function of the ubiquitin system in Aplysia. J. Neurosci. 15, 7592–7603 (1995).

    Article  CAS  Google Scholar 

  26. Chain, D. G., Schwartz, J. H. & Hegde, A. N. Ubiquitin-mediated proteolysis in learning and memory. Mol. Neurobiol. 20, 125–142 (1999).

    Article  CAS  Google Scholar 

  27. Hegde, A. N. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997).

    Article  CAS  Google Scholar 

  28. Feliciello, A. et al. The localization and activity of cAMP-dependent protein kinase affect cell cycle progression in thyroid cells. J. Biol. Chem. 275, 303–311 (2000).

    Article  CAS  Google Scholar 

  29. Yu, P., Chen, Y., Tagle, D. A. & Cai, T. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 79, 869–874 (2002).

    Article  CAS  Google Scholar 

  30. Nakayama, M., Miyake, T., Gahara, Y., Ohara, O. & Kitamura, T. A novel RING-H2 motif protein downregulated by axotomy: its characteristic localization at the postsynaptic density of axosomatic synapse. J. Neurosci. 15, 5238–5248 (1995).

    Article  CAS  Google Scholar 

  31. Rubino, H. M., Dammerman, M., Shafit-Zagardo, B. & Erlichman, J. Localization and characterization of the binding site for the regulatory subunit of type II cAMP-dependent protein kinase on MAP2. Neuron 3, 631–638 (1989).

    Article  CAS  Google Scholar 

  32. Bregman, D. B., Hirsch, A. H. & Rubin, C. S. Molecular characterization of bovine brain P75, a high affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II β. J. Biol. Chem. 266, 7207–7213 (1991).

    CAS  PubMed  Google Scholar 

  33. Glantz, S. B., Amat, J. A. & Rubin, C. S. cAMP signaling in neurons: patterns of neuronal expression and intracellular localization for a novel protein, AKAP 150, that anchors the regulatory subunit of cAMP-dependent protein kinase II β. Mol. Biol. Cell 3, 1215–1228 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y. et al. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J. Neurosci. 27, 13843–13853 (2007).

    Article  CAS  Google Scholar 

  35. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 6, 569–582 (2007).

    Article  CAS  Google Scholar 

  36. Stefan, E. et al. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc. Natl Acad. Sci. USA 104, 16916–16921 (2007).

    Article  CAS  Google Scholar 

  37. Lavoie, C. et al. β1/β2-adrenergic receptor heterodimerization regulates β 2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem. 277, 35402–35410 (2002).

    Article  CAS  Google Scholar 

  38. Lonze, B. E. & Ginty, D. D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  39. Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822 (1997).

    Article  CAS  Google Scholar 

  40. Malleret, G. et al. Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J. Neurosci. 30, 3813–3825 (2010).

    Article  CAS  Google Scholar 

  41. Armstrong, R., Wen, W., Meinkoth, J., Taylor, S. & Montminy, M. A refractory phase in cyclic AMP-responsive transcription requires down regulation of protein kinase A. Mol. Cell Biol. 15, 1826–1832 (1995).

    Article  CAS  Google Scholar 

  42. Canettieri, G. et al. Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex. Nat. Struct. Biol. 10, 175–181 (2003).

    Article  CAS  Google Scholar 

  43. Houslay, M. D., Baillie, G. S. & Maurice, D. H. cAMP-specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ. Res. 100, 950–966 (2007).

    Article  CAS  Google Scholar 

  44. Davis, G. W., DiAntonio, A., Petersen, S. A. & Goodman, C. S. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20, 305–315 (1998).

    Article  CAS  Google Scholar 

  45. Amieux, P. S. et al. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. J. Biol. Chem. 277, 27294–27304 (2002).

    Article  CAS  Google Scholar 

  46. Newhall, K. J., Cummings, D. E., Nolan, M. A. & McKnight, G. S. Deletion of the RIIβ-subunit of protein kinase A decreases body weight and increases energy expenditure in the obese, leptin-deficient ob/ob mouse. Mol. Endocrinol. 19, 982–991 (2005).

    Article  CAS  Google Scholar 

  47. Cummings, D. E. et al. Genetically lean mice result from targeted disruption of the RII β subunit of protein kinase A. Nature 382, 622–626 (1996).

    Article  CAS  Google Scholar 

  48. Hegde, A. N., Goldberg, A. L. & Schwartz, J. H. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc. Natl Acad. Sci. USA 90, 7436–7440 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Associazione Italiana per la Ricerca sul Cancro (AIRC) and the Italian Ministry of University and Research (MIUR) 2008–2009 (2007KS47FW_002). E.S. was supported from Austrian Science Fund (FWF) Grant P22608 and Junior Researcher Support 2009 (University of Innsbruck). Special thanks to M. Gottesman, E. Avvedimento and K. Bister for discussion and critical reading of the manuscript, D. Viaggiano for help in immunohistochemistry and confocal microscopy analysis, R. D. Donne for help in carrying out experiments and S. McKnight and M. Ginsberg for providing the vectors for epitope-tagged R subunits. This manuscript is dedicated to the memory of M. Graziano.

Author information

Authors and Affiliations

Authors

Contributions

L.L., L.A., E.S. and A.F. designed the experiments. L.L. carried out most of the experiments except for the following:

Figs 2c, 7c,d and Supplementary Figs S5 and S7b were carried out by A.S., C.S. and O.C.

Figs 1d and 5g were carried out by M.S., who also generated praja2-deletion mutants.

Figs 3f–h, 5c–f, i, j, m and Supplementary Fig. S6b were carried out by E.S.

Figs 2a,b, 5a, 6a and Supplementary Figs S3 and S4 were carried out by C.G.

Figs 6g,h, 7e and Supplementary Fig. S7a were carried out by A.C.

Fig. 7f,g were carried out by R.N.

L.L., E.S., L.A. and A.F. analysed the data.

A.F. wrote the manuscript with contributions from L.A. and E.S.

Corresponding author

Correspondence to Antonio Feliciello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 940 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lignitto, L., Carlucci, A., Sepe, M. et al. Control of PKA stability and signalling by the RING ligase praja2. Nat Cell Biol 13, 412–422 (2011). https://doi.org/10.1038/ncb2209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing