Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cilia protein IFT88 is required for spindle orientation in mitosis

Abstract

Cilia dysfunction has long been associated with cyst formation and ciliopathies1. More recently, misoriented cell division has been observed in cystic kidneys2, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells3,4. Several IFT proteins also localize to spindle poles in mitosis5,6,7,8, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737orpk and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IFT88 depletion leads to mitotic defects in HeLa cells, kidney cells from the Tg737orpk mouse mutant and zebrafish.
Figure 2: IFT88 depletion disrupts astral microtubules and the spindle pole localization of proteins involved in microtubule nucleation in HeLa cells.
Figure 3: IFT88 is required for the movement of peripheral microtubule clusters containing microtubule-nucleating components towards spindle poles in LLC-PK1 cells stably expressing GFP– α -tubulin.
Figure 4: IFT88 moves towards spindle poles and requires microtubules for its spindle pole localization.
Figure 5: IFT88 is part of a dynein1-driven transport complex in mitosis.

Similar content being viewed by others

References

  1. Hildebrandt, F. & Otto, E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?. Nat. Rev. Genet. 6, 928–940 (2005).

    Article  CAS  Google Scholar 

  2. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38, 21–23 (2006).

    Article  CAS  Google Scholar 

  3. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  Google Scholar 

  4. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  Google Scholar 

  5. Iomini, C., Tejada, K., Mo, W., Vaananen, H. & Piperno, G. Primary cilia of human endothelial cells disassemble under laminar shear stress. J. Cell Biol. 164, 811–817 (2004).

    Article  CAS  Google Scholar 

  6. Robert, A. et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J. Cell Sci. 120, 628–637 (2007).

    Article  CAS  Google Scholar 

  7. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  Google Scholar 

  8. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    Article  CAS  Google Scholar 

  9. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing centre. Trends Cell Biol. 11, 413–419 (2001).

    Article  CAS  Google Scholar 

  10. Scholey, J. M. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J. Cell Biol. 180, 23–29 (2008).

    Article  CAS  Google Scholar 

  11. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  12. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    Article  CAS  Google Scholar 

  13. Luders, J. & Stearns, T. Microtubule-organizing centres: a re-evaluation. Nat. Rev. Mol. Cell Biol. 8, 161–167 (2007).

    Article  Google Scholar 

  14. O’Connell, C. B. & Wang, Y. L. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).

    Article  Google Scholar 

  15. Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

    Article  CAS  Google Scholar 

  16. Murcia, N. S. et al. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127, 2347–2355 (2000).

    CAS  PubMed  Google Scholar 

  17. Haycraft, C. J., Swoboda, P., Taulman, P. D., Thomas, J. H. & Yoder, B. K. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128, 1493–1505 (2001).

    CAS  PubMed  Google Scholar 

  18. Kramer-Zucker, A. G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  Google Scholar 

  19. Han, Y. G., Kwok, B. H. & Kernan, M. J. Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr. Biol. 13, 1679–1686 (2003).

    Article  CAS  Google Scholar 

  20. Tulu, U. S., Rusan, N. M. & Wadsworth, P. Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr. Biol. 13, 1894–1899 (2003).

    Article  CAS  Google Scholar 

  21. Rusan, N. M., Tulu, U. S., Fagerstrom, C. & Wadsworth, P. Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport. J. Cell Biol. 158, 997–1003 (2002).

    Article  CAS  Google Scholar 

  22. Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).

    Article  CAS  Google Scholar 

  23. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  Google Scholar 

  24. Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    Article  CAS  Google Scholar 

  25. Green, R. A., Wollman, R. & Kaplan, K. B. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 16, 4609–4622 (2005).

    Article  CAS  Google Scholar 

  26. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    Article  CAS  Google Scholar 

  27. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  28. Gaglio, T., Dionne, M. A. & Compton, D. A. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138, 1055–1066 (1997).

    Article  CAS  Google Scholar 

  29. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  30. Corthesy-Theulaz, I., Pauloin, A. & Pfeffer, S. R. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118, 1333–1345 (1992).

    Article  CAS  Google Scholar 

  31. Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–842 (1996).

    Article  CAS  Google Scholar 

  32. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamashita, Y. M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315, 518–521 (2007).

    Article  CAS  Google Scholar 

  34. Wheatley, D. N. Primary cilia in normal and pathological tissues. Pathobiology 63, 222–238 (1995).

    Article  CAS  Google Scholar 

  35. Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 (2009).

    Article  CAS  Google Scholar 

  36. Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  37. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  Google Scholar 

  38. Follit, J. A., Xu, F., Keady, B. T. & Pazour, G. J. Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66, 457–468 (2009).

    Article  CAS  Google Scholar 

  39. Mikule, K. et al. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat. Cell Biol. 9, 160–170 (2007).

    Article  CAS  Google Scholar 

  40. Westerfield, M. The Zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio) (Univ. Oregon Press, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank G. Pazour, G. Witman and P. Wadsworth for thoughtful discussions on this work, and S. Redick for assistance with microscopy. We are particularly grateful to L. Covassin-Barberis in N.L. laboratory and N.L. Adkins in C. Peterson’s laboratory for guidance on zebrafish experimental work and gel-filtration experiments, respectively. We thank G. Pazour for the gift of IFT88 antibody and GFP–IFT88 LLC-PK1, Flag–IFT52 IMCD stable cell lines, P. Wadsworth for the GFP– α -tubulin LLC-PK1 cell line and C. Desdouets, P. Denoulet and C. Janke for their gift of antibodies specific to IFT88 and polyglutamylated tubulin, respectively. Core resources supported by the Diabetes Endocrinology Research Center grant DK32520 were used; S.D. is a member of the UMass DERC (DK32520). This work was supported by financial support from the National Institutes of Health (GM51994) to S.D. and the Polycystic Kidney Disease Foundation to B.D.

Author information

Authors and Affiliations

Authors

Contributions

B.D. and S.D. wrote the manuscript. B.D. conceived and planned the experimental work. B.D. and A.B. carried out the experimental work and analysed the data. N.D.L. provided the zebrafish facility and helped plan and guide the zebrafish experimental work.

Corresponding author

Correspondence to Stephen Doxsey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1851 kb)

Supplementary Movie 1

Supplementary Information (MOV 509 kb)

Supplementary Movie 2

Supplementary Information (MOV 514 kb)

Supplementary Movie 3

Supplementary Information (MOV 728 kb)

Supplementary Movie 4

Supplementary Information (MOV 709 kb)

Supplementary Movie 5

Supplementary Information (MOV 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaval, B., Bright, A., Lawson, N. et al. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13, 461–468 (2011). https://doi.org/10.1038/ncb2202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing