Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking

Abstract

Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions1,2. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated3. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cbl activity regulates Fgf signalling range without affecting the extracellular Fgf protein gradient.
Figure 2: Cbl-YF changes the tissue distribution profile of intracellular Fgf8.
Figure 3: Cbl-YF induces a delay in lysosomal targeting of Fgf8 and FgfR1 and their enrichment in caveolae.
Figure 4: Cbl-YF causes an increase in co-localization of FgfR1 and Grb2, but a reduction in Grb2 localization to the degradative pathway.
Figure 5: Model for Cbl function during complex pattern formation.

Similar content being viewed by others

References

  1. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Jaeger, J., Irons, D. & Monk, N. Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development 135, 3175–3183 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  PubMed  Google Scholar 

  5. Reifers, F., Walsh, E. C., Leger, S., Stainier, D. Y. & Brand, M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127, 225–235 (2000).

    CAS  PubMed  Google Scholar 

  6. Raible, F. & Brand, M. Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mech. Dev. 107, 105–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Leger, S. & Brand, M. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mech. Dev. 119, 91–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Scholpp, S. & Brand, M. Endocytosis controls spreading and effective signaling range of Fgf8 protein. Curr. Biol. 14, 1834–1841 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, S. R. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Piddini, E. & Vincent, J. P. Interpretation of the wingless gradient requires signaling-induced self-inhibition. Cell 136, 296–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Jullien, J. & Gurdon, J. Morphogen gradient interpretation by a regulated trafficking step during ligand–receptor transduction. Genes Dev. (2005).

  14. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  Google Scholar 

  15. Dikic, I. & Giordano, S. Negative receptor signalling. Curr. Opin. Cell Biol. 15, 128–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Haugsten, E. M., Malecki, J., Bjorklund, S. M., Olsnes, S. & Wesche, J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol. Biol. Cell 19, 3390–3403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, F., Goh, L. K. & Sorkin, A. EGF receptor ubiquitination is not necessary for its internalization. Proc. Natl Acad. Sci. USA 104, 16904–16909 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Nau, M. M. & Lipkowitz, S. Comparative genomic organization of the cbl genes. Gene 308, 103–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kassenbrock, C. K. & Anderson, S. M. Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279, 28017–28027 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  22. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Haugsten, E. M., Sorensen, V., Brech, A., Olsnes, S. & Wesche, J. Different intracellular trafficking of FGF1 endocytosed by the four homologous FGF receptors. J. Cell Sci. 118, 3869–3881 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  25. Pelkmans, L. & Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436, 128–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Rohner, N. et al. Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr. Biol. 19, 1642–1647 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306, 1506–1507 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ryan, P. E., Davies, G. C., Nau, M. M. & Lipkowitz, S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem. Sci. 31, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Bao, J., Gur, G. & Yarden, Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc. Natl Acad. Sci. USA 100, 2438–2443 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Nahmad, M. & Stathopoulos, A. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc. PLoS Biol. 7, e1000202 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amaya, E., Stein, P. A., Musci, T. J. & Kirschner, M. W. FGF signalling in the early specification of mesoderm in Xenopus. Development 118, 477–487 (1993).

    CAS  PubMed  Google Scholar 

  32. Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005).

    Article  CAS  Google Scholar 

  33. MacArthur, C. A. et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121, 3603–3613 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Brand and M. Zerial laboratories for stimulating discussions; C. Boekel, C. P. Heisenberg and M. McShane for critical comments on the manuscript; M. Fischer and K. Sipple for fish care; and P. Schwille and the Biotec/CRTD imaging facility for technical advice. This work was supported by an HFSP network grant (050503-50) and by the EU Endotrack grant (050503-52) to M.B.

Author information

Authors and Affiliations

Authors

Contributions

M.N., S.R.Y., M.G. and A.M. carried out experiments. M.N., S.R.Y. and M.B. analysed the data. M.N. and M.B. designed the project and wrote the paper.

Corresponding author

Correspondence to Michael Brand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, M., Machate, A., Yu, S. et al. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking. Nat Cell Biol 13, 153–158 (2011). https://doi.org/10.1038/ncb2155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing