Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oct4 kinetics predict cell lineage patterning in the early mammalian embryo

An Erratum to this article was published on 01 March 2011

This article has been updated

Abstract

Transcription factors are central to sustaining pluripotency, yet little is known about transcription factor dynamics in defining pluripotency in the early mammalian embryo. Here, we establish a fluorescence decay after photoactivation (FDAP) assay to quantitatively study the kinetic behaviour of Oct4, a key transcription factor controlling pre-implantation development in the mouse embryo. FDAP measurements reveal that each cell in a developing embryo shows one of two distinct Oct4 kinetics, before there are any morphologically distinguishable differences or outward signs of lineage patterning. The differences revealed by FDAP are due to differences in the accessibility of Oct4 to its DNA binding sites in the nucleus. Lineage tracing of the cells in the two distinct sub-populations demonstrates that the Oct4 kinetics predict lineages of the early embryo. Cells with slower Oct4 kinetics are more likely to give rise to the pluripotent cell lineage that contributes to the inner cell mass. Those with faster Oct4 kinetics contribute mostly to the extra-embryonic lineage. Our findings identify Oct4 kinetics, rather than differences in total transcription factor expression levels, as a predictive measure of developmental cell lineage patterning in the early mouse embryo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective photoactivation in live mouse embryos allows imaging of Oct4–paGFP kinetic behaviours.
Figure 2: Oct4–paGFP kinetic behaviours identify two cell populations in the mouse embryo.
Figure 3: Oct4–paGFP kinetics are uncorrelated to total fluorescence in the cell nucleus.
Figure 4: Oct4–paGFP kinetics predict patterning of inside and outside cells.
Figure 5: Schematic illustration of Oct4–paGFP kinetics and cell lineage allocation in the early mouse embryo.

Similar content being viewed by others

Change history

  • 28 January 2011

    In the version of this article initially published online and in print, the values for kout and kin in table 1 were incorrect. This error has been corrected in both the HTML and PDF versions of the article.

References

  1. Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Zernicka-Goetz, M., Morris, S. A. & Bruce, A. W. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat. Rev. Genet. 10, 467–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Tarkowski, A. K. & Wroblewska, J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180 (1967).

    CAS  PubMed  Google Scholar 

  4. Ziomek, C. A. & Johnson, M. H. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21, 935–942 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Morris, S. A., et al. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc. Natl Acad. Sci. USA 107, 6364–6369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zernicka-Goetz, M. Cleavage pattern and emerging asymmetry of the mouse embryo. Nat. Rev. Mol. Cell Biol. 6, 919–928 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445, 214–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kurotaki, Y., Hatta, K., Nakao, K., Nabeshima, Y. & Fujimori, T. Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316, 719–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Motosugi, N., Bauer, T., Polanski, Z., Solter, D. & Hiiragi, T. Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev. 19, 1081–1092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyer, L. A., Mathur, D. & Jaenisch, R. Molecular control of pluripotency. Curr. Opin. Genet. Dev. 16, 455–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Remenyi, A., Scholer, H. R. & Wilmanns, M. Combinatorial control of gene expression. Nat. Struct. Mol. Biol. 11, 812–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Nichols, J., et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Rosner, M. H., et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Scholer, H. R., Dressler, G. R., Balling, R., Rohdewohld, H. & Gruss, P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9, 2185–2195 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. B., et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J. B., et al. Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Phair, R. D., et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol. 24, 6393–6402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelson, D. E., et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lahav, G., et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pantazis, P. & Gonzalez-Gaitan, M. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs. J. Biomed. Opt. 12, 044004 (2007).

    Article  PubMed  Google Scholar 

  26. Pan, G., Qin, B., Liu, N., Scholer, H. R. & Pei, D. Identification of a nuclear localization signal in OCT4 and generation of a dominant negative mutant by its ablation. J. Biol. Chem. 279, 37013–37020 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, F., Scholer, H. R. & Atchison, M. L. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551–21560 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Dudu, V., et al. Postsynaptic mad signaling at the Drosophila neuromuscular junction. Curr. Biol. 16, 625–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Wolffe, A. P. Centromeric chromatin. Histone deviants. Curr. Biol. 5, 452–454 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Avilion, A. A., et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Remenyi, A., et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 17, 2048–2059 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niakan, K. K., et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, M. H. & Ziomek, C. A. Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J. Cell Biol. 91, 303–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Cohen-Saidon, C., Cohen, A. A., Sigal, A., Liron, Y. & Alon, U. Dynamics and variability of ERK2 response to EGF in individual living cells. Mol. Cell 36, 885–893 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling. Mol. Cell 36, 872–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Boer, B., et al. Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic Acids Res. 35, 1773–1786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowling, T. K., Johnson, L. R., Wiebe, M. S. & Rizzino, A. Identification of the transactivation domain of the transcription factor Sox-2 and an associated co-activator. J. Biol. Chem. 275, 3810–3818 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Sohn, J., et al. Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J. Neurosci. 26, 9722–9735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niwa, H., et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We especially thank Juan Silva and John Earle for excellent technical support with mouse embryo work. We also thank H. Schöler, J. Lippincott-Schwartz, G. Patterson and Li-Jin Chew for constructs. N.P. is supported by California Institute for Regenerative Medicine (CIRM), European Molecular Biology Organization (EMBO) and Swiss National Science Foundation (SNF), fellowships. T.B. was supported by the Alexander von Humboldt foundation. P.P. is supported by the German Science Foundation (DFG). This work was supported by the Beckman Institute and Biological Imaging Center at the California Institute of Technology and by the NHGRI Center of Excellence in Genomic Science grant P50HG004071.

Author information

Authors and Affiliations

Authors

Contributions

T.B. performed the quantitative analysis. S.P. performed microinjections into mouse embryos. N.P., S.E.F. and P.P. designed and N.P. and P.P. carried out all other experiments.

Corresponding author

Correspondence to Periklis Pantazis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1114 kb)

Supplementary Movie 1

Supplementary Information (MOV 1443 kb)

Supplementary Movie 2

Supplementary Information (MOV 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plachta, N., Bollenbach, T., Pease, S. et al. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13, 117–123 (2011). https://doi.org/10.1038/ncb2154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing