Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway

Abstract

Primary microcephaly 1 is a neurodevelopmental disorder caused by mutations in the MCPH1 gene, whose product MCPH1 (also known as microcephalin and BRIT1) regulates DNA-damage response. Here we show that Mcph1 disruption in mice results in primary microcephaly, mimicking human MCPH1 symptoms, owing to a premature switching of neuroprogenitors from symmetric to asymmetric division. MCPH1-deficiency abrogates the localization of Chk1 to centrosomes, causing premature Cdk1 activation and early mitotic entry, which uncouples mitosis and the centrosome cycle. This misorients the mitotic spindle alignment and shifts the division plane of neuroprogenitors, to bias neurogenic cell fate. Silencing Cdc25b, a centrosome substrate of Chk1, corrects MCPH1-deficiency-induced spindle misalignment and rescues the premature neurogenic production in Mcph1-knockout neocortex. Thus, MCPH1, through its function in the Chk1–Cdc25–Cdk1 pathway to couple the centrosome cycle with mitosis, is required for precise mitotic spindle orientation and thereby regulates the progenitor division mode to maintain brain size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microcephaly of Mcph1-del mice.
Figure 2: Neocortical developmental analysis of Mcph1-del mice.
Figure 3: Characterization of Mcph1-knockout neural progenitors in vitro and in vivo.
Figure 4: In vivo analyses of the cell division mode of neuroprogenitors.
Figure 5: Analysis of cell-cycle-dependent Chk1 centrosome localization, premature mitotic entry and centrosome maturation in primary neuroprogenitors.
Figure 6: Analysis of premature mitotic entry and centrosome maturation in primary neuroprogenitors.
Figure 7: Characterization of mitotic spindle defects in Mcph1-del neuroprogenitors and MEFs by Chk1 and/or Cdc25b knockdown.
Figure 8: In vivo silencing of Chk1 and Cdc25b in the neocortex by in utero electroporation.

Similar content being viewed by others

References

  1. Tang, B. L. Molecular genetic determinants of human brain size. Biochem. Biophys. Res. Commun. 345, 911–916 (2006).

    Article  CAS  Google Scholar 

  2. Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309, 1717–1720 (2005).

    Article  CAS  Google Scholar 

  3. Wang, Y. Q. & Su, B. Molecular evolution of microcephalin, a gene determining human brain size. Hum. Mol. Genet. 13, 1131–1137 (2004).

    Article  CAS  Google Scholar 

  4. Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J.Hum. Genet. 76, 717–728 (2005).

    Article  CAS  Google Scholar 

  5. Thornton, G. K. & Woods, C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501–510 (2009).

    Article  CAS  Google Scholar 

  6. Nicholas, A. K. et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet. 42, 1010–1014 (2010).

    Article  CAS  Google Scholar 

  7. Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 87, 40–51 (2010).

    Article  CAS  Google Scholar 

  8. Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 42, 1015–1020 (2010).

    Article  CAS  Google Scholar 

  9. Neitzel, H. et al. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am. J. Hum. Genet. 70, 1015–1022 (2002).

    Article  Google Scholar 

  10. Trimborn, M. et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. 75, 261–266 (2004).

    Article  CAS  Google Scholar 

  11. Wood, J.L., Liang, Y., Li, K. & Chen, J. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J. Biol. Chem. 283, 29586–29592 (2008).

    Article  CAS  Google Scholar 

  12. Trimborn, M., Schindler, D., Neitzel, H. & Hirano, T. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle 5, 322–326 (2006).

    Article  CAS  Google Scholar 

  13. Jeffers, L. J., Coull, B. J., Stack, S. J. & Morrison, C. G. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 27, 139–144 (2008).

    Article  CAS  Google Scholar 

  14. Lin, S. Y., Rai, R., Li, K., Xu, Z. X. & Elledge, S. J. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc. Natl Acad. Sci. USA 102, 15105–15109 (2005).

    Article  CAS  Google Scholar 

  15. Rai, R. et al. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10, 145–157 (2006).

    Article  CAS  Google Scholar 

  16. Alderton, G. K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat. Cell Biol. 8, 725–733 (2006).

    Article  CAS  Google Scholar 

  17. Xu, X., Lee, J. & Stern, D. F. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J. Biol. Chem. 279, 34091–34094 (2004).

    Article  CAS  Google Scholar 

  18. Peng, G. et al. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat. Cell Biol. 11, 865–872 (2009).

    Article  CAS  Google Scholar 

  19. Yang, S. Z., Lin, F. T. & Lin, W. C. MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep. 9, 907–915 (2008).

    Article  CAS  Google Scholar 

  20. McKinnon, P. J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 10, 100–112 (2009).

    Article  CAS  Google Scholar 

  21. Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232–236 (2008).

    Article  CAS  Google Scholar 

  22. Bond, J. & Woods, C. G. Cytoskeletal genes regulating brain size. Curr. Opin.Cell Biol. 18, 95–101 (2006).

    Article  CAS  Google Scholar 

  23. Huttner, W. B. & Kosodo, Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin.Cell Biol. 17, 648–657 (2005).

    Article  CAS  Google Scholar 

  24. Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  Google Scholar 

  25. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).

    Article  CAS  Google Scholar 

  26. Liang, Y. et al. BRIT1/MCPH1 is essential for mitotic and meiotic recombinationDNA repair and maintaining genomic stability in mice. PLoS Genet. 6, e1000826 (2010).

    Article  Google Scholar 

  27. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  Google Scholar 

  28. Zhong, W. & Chia, W. Neurogenesis and asymmetric cell division. Curr. Opin. Neurobiol. 18, 4–11 (2008).

    Article  Google Scholar 

  29. Fish, J. L., Dehay, C., Kennedy, H. & Huttner, W. B. Making bigger brains-the evolution of neural-progenitor-cell division. J. Cell Sci. 121, 2783–2793 (2008).

    Article  CAS  Google Scholar 

  30. Buchman, J. J. & Tsai, L. H. Spindle regulation in neural precursors of flies and mammals. Nat. Rev. Neurosci. 8, 89–100 (2007).

    Article  CAS  Google Scholar 

  31. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  Google Scholar 

  32. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    Article  CAS  Google Scholar 

  33. Higginbotham, H. R. & Gleeson, J. G. The centrosome in neuronal development. Trends Neurosci. 30, 276–283 (2007).

    Article  CAS  Google Scholar 

  34. Doxsey, S., Zimmerman, W. & Mikule, K. Centrosome control of the cell cycle. Trends Cell Biol. 15, 303–311 (2005).

    Article  CAS  Google Scholar 

  35. Tibelius, A. et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J. Cell Biol. 185, 1149–1157 (2009).

    Article  CAS  Google Scholar 

  36. Kramer, A. et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat. Cell Biol. 6, 884–891 (2004).

    Article  Google Scholar 

  37. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    Article  CAS  Google Scholar 

  38. Rebollo, E. et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12, 467–474 (2007).

    Article  CAS  Google Scholar 

  39. Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nat. Rev. Cancer 7, 911–924 (2007).

    Article  CAS  Google Scholar 

  40. Zachos, G. et al. Chk1 is required for spindle checkpoint function. Dev. Cell 12, 247–260 (2007).

    Article  CAS  Google Scholar 

  41. Loffler, H. et al. Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 5, 2543–2547 (2006).

    Article  Google Scholar 

  42. Chen, Y. & Poon, R. Y. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front. Biosci. 13, 5016–5029 (2008).

    CAS  Google Scholar 

  43. Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).

    Article  Google Scholar 

  44. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  Google Scholar 

  45. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  Google Scholar 

  46. Rauch, A. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319, 816–819 (2008).

    Article  CAS  Google Scholar 

  47. Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

    Article  CAS  Google Scholar 

  48. Lizarraga, S. B. et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137, 1907–1917 (2010).

    Article  CAS  Google Scholar 

  49. Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  Google Scholar 

  50. Pulvers, J. N. et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl Acad. Sci. USA 107, 16595–16600 (2010).

    Article  CAS  Google Scholar 

  51. Wakefield, J. G., Bonaccorsi, S. & Gatti, M. The Drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153, 637–648 (2001).

    Article  CAS  Google Scholar 

  52. Lucas, E. P. & Raff, J. W. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725–732 (2007).

    Article  CAS  Google Scholar 

  53. Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    Article  CAS  Google Scholar 

  54. Brunk, K. et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J. Cell Sci. 120, 3578–3588 (2007).

    Article  CAS  Google Scholar 

  55. Buchman, J. J. et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386–402 (2010).

    Article  CAS  Google Scholar 

  56. Trimborn, M. et al. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function. PLoS ONE 5, e9242 (2010).

    Article  Google Scholar 

  57. Gonczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  Google Scholar 

  58. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008).

    Article  CAS  Google Scholar 

  59. Zhou, Z. et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res. 20, 1023–1033 (2010).

    Article  CAS  Google Scholar 

  60. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154.

  61. Nowakowski, R. S., Lewin, S. B. & Miller, M. W. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18, 311–318 (1989).

    Article  CAS  Google Scholar 

  62. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552–1558 (2006).

    Article  CAS  Google Scholar 

  63. Frappart, P. O. et al. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat. Med. 11, 538–544 (2005).

    Article  CAS  Google Scholar 

  64. Akhter, S. et al. Deficiency in SNM1 abolishes an early mitotic checkpoint induced by spindle stress. Mol. Cell. Biol. 24, 10448–10455 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Frappart for the advice and the discussion on histological analysis and Z. Xu for the introduction into the in utero electroporation technology. We are grateful to M. Baldauf for his histological assistance, M. Welzel for her technical support and D. Galendo, C. Birch-Hirschfeld and C. Mueller for their assistance in the maintenance of the animal colonies. We are also grateful to M. Trajkovic-Arsic for the advice on the in situ hybridization techniques and A. Gompf for the FACS. We also would like to thank P. Herrlich, H. Heuer, T. Li and Y. Yang for their critical reading of the manuscript. Further thanks go to E. Stoeckl for editing the manuscript. We are also grateful to many other members of our laboratory for the helpful discussions. R.G., M.S. and Z.W.Z. are supported by a fellowship of the Leibniz Graduate School on Ageing (LGSA) Programme. P-O.F. is supported by an Emmy Noether Grant from the Deutschen Forschungsgemeinschaft (DFG). Z-Q.W. is supported in part by the DFG, Germany.

Author information

Authors and Affiliations

Authors

Contributions

R.G. carried out most of the experiments, analysed data and prepared the figures and the manuscript; Z.W.Z. carried out in situ hybridization, in utero electroporation, immunoblot analysis and analysed data; M.S. carried out gene targeting in embryonic stem cells and analysed gene expression; P-O.F. assisted with neurosphere experiments; T.J. contributed to mouse colony maintenance; Z-Q.W. designed experiments, analysed data and composed the manuscript.

Corresponding authors

Correspondence to Ralph Gruber or Zhao-Qi Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, R., Zhou, Z., Sukchev, M. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat Cell Biol 13, 1325–1334 (2011). https://doi.org/10.1038/ncb2342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing