Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication

Subjects

Abstract

Many of the factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication is poorly understood in multicellular organisms. Here, we report the identification of GEMC1 (geminin coiled-coil containing protein 1), a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus laevis egg extract we show that Xenopus GEMC1 (xGEMC1) binds to the checkpoint and replication factor TopBP1, which promotes binding of xGEMC1 to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 interacts directly with replication factors such as Cdc45 and the kinase Cdk2–CyclinE, through which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication, whereas depletion of xGEMC1 prevents the onset of DNA replication owing to the impairment of Cdc45 loading onto chromatin. Similarly, inhibition of GEMC1 expression with morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in multicellular organisms by mediating TopBP1- and Cdk2-dependent recruitment of Cdc45 onto replication origins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of GEMC1.
Figure 2: Analysis of GEMC1 function in DNA replication.
Figure 3: Identification of proteins that interact with GEMC1.
Figure 4: Effects of inhibiting GEMC1 expression in Xenopus embryos.
Figure 5: Effects of inhibiting GEMC1 expression in mammalian cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Diffley, J. F. Regulation of early events in chromosome replication. Curr. Biol. 14, R778–786 (2004).

    Article  CAS  Google Scholar 

  2. Takisawa, H., Mimura, S. & Kubota, Y. Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr. Opin. Cell. Biol. 12, 690–696 (2000).

    Article  CAS  Google Scholar 

  3. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  Google Scholar 

  4. Saxena, S. et al. A dimerized coiled-coil domain and an adjoining part of geminin interact with two sites on Cdt1 for replication inhibition. Mol. Cell 15, 245–258 (2004).

    Article  CAS  Google Scholar 

  5. Costanzo, V. & Gautier, J. Xenopus cell-free extracts to study DNA damage checkpoints. Methods Mol. Biol. 241, 255–267 (2004).

    CAS  PubMed  Google Scholar 

  6. Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008).

    Article  CAS  Google Scholar 

  7. Hashimoto, Y. & Takisawa, H. Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J. 22, 2526–2535 (2003).

    Article  CAS  Google Scholar 

  8. Newport, J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48, 205–217 (1987).

    Article  CAS  Google Scholar 

  9. Dunphy, W. G., Brizuela, L., Beach, D. & Newport, J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431 (1988).

    Article  CAS  Google Scholar 

  10. Luciani, M. G., Oehlmann, M. & Blow, J. J. Characterization of a novel ATR-dependent, Chk1-independent, intra-S phase checkpoint that suppresses initiation of replication in Xenopus. J. Cell Sci. 117, 6019–6030 (2004).

    Article  CAS  Google Scholar 

  11. Mimura, S., Seki, T., Tanaka, S. & Diffley, J. F. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431, 1118–1123 (2004).

    Article  CAS  Google Scholar 

  12. Schulman, B. A., Lindstrom, D. L. & Harlow, E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin, A. Proc. Natl. Acad. Sci. USA 95, 10453–10458 (1998).

    Article  CAS  Google Scholar 

  13. Blow, J. J. & Laskey, R. A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587 (1986).

    Article  CAS  Google Scholar 

  14. Krasinska, L. et al. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J. 27, 758–769 (2008).

    Article  CAS  Google Scholar 

  15. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nat. Cell. Biol. 6, 648–655 (2004).

    Article  CAS  Google Scholar 

  16. Khokha, M. K. et al. Techniques and probes for the study of Xenopus tropicalis development. Dev. Dyn. 225, 499–510 (2002).

    Article  CAS  Google Scholar 

  17. Kubota, Y. et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17, 1141–1152 (2003).

    Article  CAS  Google Scholar 

  18. Van Hatten, R. A. et al. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J. Cell Biol. 159, 541–547 (2002).

    Article  CAS  Google Scholar 

  19. Wohlschlegel, J. A., Dhar, S. K., Prokhorova, T. A., Dutta, A. & Walter, J. C. Xenopus Mcm10 binds to origins of DNA replication after Mcm2–7 and stimulates origin binding of Cdc45. Mol. Cell 9, 233–240 (2002).

    Article  CAS  Google Scholar 

  20. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627 (2000).

    Article  CAS  Google Scholar 

  21. Mimura, S. & Takisawa, H. Xenopus Cdc45-dependent loading of DNA polymerase α onto chromatin under the control of S phase Cdk. EMBO J. 17, 5699–5707 (1998).

    Article  CAS  Google Scholar 

  22. Tanaka, T. & Nasmyth, K. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17, 5182–5191 (1998).

    Article  CAS  Google Scholar 

  23. Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007).

    Article  CAS  Google Scholar 

  24. Tanaka, S. et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332 (2007).

    Article  CAS  Google Scholar 

  25. Kamimura, Y., Tak, Y. S., Sugino, A. & Araki, H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20, 2097–2107 (2001).

    Article  CAS  Google Scholar 

  26. Nakajima, R. & Masukata, H. SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol. Biol. Cell 13, 1462–1472 (2002).

    Article  CAS  Google Scholar 

  27. Tanaka, S., Tak, Y. S. & Araki, H. The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div. 2, 16 (2007).

    Article  Google Scholar 

  28. Sangrithi, M. N. et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121, 887–898 (2005).

    Article  CAS  Google Scholar 

  29. Matsuno, K., Kumano, M., Kubota, Y., Hashimoto, Y. & Takisawa, H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol. Cell Biol. 26, 4843–4852 (2006).

    Article  CAS  Google Scholar 

  30. Kubota, Y. & Takisawa, H. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts. J. Cell Biol. 123, 1321–1331 (1993).

    Article  CAS  Google Scholar 

  31. Hensey, C. & Gautier, J. A developmental timer that regulates apoptosis at the onset of gastrulation. Mech. Dev. 69, 183–195 (1997).

    Article  CAS  Google Scholar 

  32. Slack, J. Embryonic development. Cell communication in early embryos. Nature 311, 107–108 (1984).

    Article  CAS  Google Scholar 

  33. Khokha, M. K. et al. Techniques and probes for the study of Xenopus tropicalis development. Dev. Dyn. 225, 499–510 (2002).

    Article  CAS  Google Scholar 

  34. Li, A. & Blow, J. J. Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J. 24, 395–404 (2005).

    Article  CAS  Google Scholar 

  35. Marheineke, K., Goldar, A., Krude, T. & Hyrien, O. Use of DNA combing to study DNA replication in Xenopus and human cell-free systems. Methods Mol. Biol. 521, 575–603 (2009).

    Article  CAS  Google Scholar 

  36. Chong, J. P., Thommes, P., Rowles, A., Mahbubani, H. M. & Blow, J. J. Characterization of the Xenopus replication licensing system. Methods Enzymol. 283, 549–564 (1997).

    Article  CAS  Google Scholar 

  37. Mechali, M. & Harland, R. M. DNA synthesis in a cell-free system from Xenopus eggs: priming and elongation on single-stranded DNA in vitro. Cell 30, 93–101 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hunt, members of Clare Hall Laboratories and members of the Genome Stability Unit for their comments, H. Mahbubani and J. Kirk for technical support with X. laevis, J. Gannon for technical assistance in antibody production and M. Wu for embryo injection. This work was supported by grants from Cancer Research UK. V. C. is also supported by the Lister Institute of Preventive Medicine, the European Research Council (ERC) start-up grant (N. 206281) and the EMBO Young Investigator Program (YIP).

Author information

Authors and Affiliations

Authors

Contributions

A.B, C.C, A.E and E.G performed the experiments. V.C conceived the experiments and wrote the manuscript.

Corresponding author

Correspondence to Vincenzo Costanzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1038 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestrini, A., Cosentino, C., Errico, A. et al. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol 12, 484–491 (2010). https://doi.org/10.1038/ncb2050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing