Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control

Abstract

Meiotic and early-embryonic cell divisions in vertebrates take place in the absence of transcription and rely on the translational regulation of stored maternal messenger RNAs. Most of these mRNAs are regulated by the cytoplasmic-polyadenylation-element-binding protein (CPEB), which mediates translational activation and repression through cytoplasmic changes in their poly(A) tail length. It was unknown whether translational regulation by cytoplasmic polyadenylation and CPEB can also regulate mRNAs at specific points of mitotic cell-cycle divisions. Here we show that CPEB-mediated post-transcriptional regulation by phase-specific changes in poly(A) tail length is required for cell proliferation and specifically for entry into M phase in mitotically dividing cells. This translational control is mediated by two members of the CPEB family of proteins, CPEB1 and CPEB4. We conclude that regulation of poly(A) tail length is not only required to compensate for the lack of transcription in specialized cell divisions but also acts as a general mechanism to control mitosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide analysis of poly(A) tail length regulation of mRNAs during the mitotic cell cycle.
Figure 2: Regulation of translation efficiency of mRNAs differentially polyadenylated during the mitotic cell cycle.
Figure 3: CPEB1 and CPEB4 can mediate cytoplasmic polyadenylation and stimulate translation of mRNAs.
Figure 4: Genome-wide analysis of regulation of poly(A) tail length in CPEB1 and CPEB4 knockdown cells.
Figure 5: Mitotic polyadenylation and translation defects in CPEB1 and CPEB4 knockdown cells.
Figure 6: Cells knocked down for both CPEB1 and CPEB4 showed cell proliferation defects.
Figure 7: Cells knocked down for both CPEB1 and CPEB4 showed delayed entry into G1.
Figure 8: Cells knocked down for both CPEB1 and CPEB4 showed impairment of progression from G2 to M.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Richter, J. D. & Klann, E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 23, 1–11 (2009).

    Article  CAS  Google Scholar 

  2. Richter, J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007).

    Article  CAS  Google Scholar 

  3. Groisman, I. et al. Control of cellular senescence by CPEB. Genes Dev. 20, 2701–2712 (2006).

    Article  CAS  Google Scholar 

  4. Burns, D. M. & Richter, J. D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449–3460 (2008).

    Article  CAS  Google Scholar 

  5. Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994).

    Article  CAS  Google Scholar 

  6. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999).

    Article  CAS  Google Scholar 

  7. Minshall, N., Reiter, M. H., Weil, D. & Standart, N. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 37389–37401 (2007).

    Article  CAS  Google Scholar 

  8. Kim, J. H. & Richter, J. D. Opposing polymerase–deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    Article  CAS  Google Scholar 

  9. Barnard, D. C., Ryan, K., Manley, J. L. & Richter, J. D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651 (2004).

    Article  CAS  Google Scholar 

  10. Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).

    Article  CAS  Google Scholar 

  11. Dickson, K. S., Thompson, S. R., Gray, N. K. & Wickens, M. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J. Biol. Chem. 276, 41810–41816 (2001).

    Article  CAS  Google Scholar 

  12. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    Article  CAS  Google Scholar 

  13. Groisman, I., Jung, M.-Y., Sarkissian, M., Cao, Q. & Richter, J. D. Translational control of the embryonic cell cycle. Cell 109, 473–483 (2002).

    Article  CAS  Google Scholar 

  14. Cao, Q., Kim, J. H. & Richter, J. D. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nature Struct. Mol. Biol. 13, 1128–1134 (2006).

    Article  CAS  Google Scholar 

  15. Meijer, H. A. et al. A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res. 35, e132 (2007).

    Article  Google Scholar 

  16. Beilharz, T. H. & Preiss, T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13, 982–997 (2007).

    Article  CAS  Google Scholar 

  17. Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol. 2, 521–529. (2001).

    Article  CAS  Google Scholar 

  18. Jacobson, A. Purification and fractionation of poly(A)+ RNA. Methods Enzymol. 152, 254–261 (1987).

    Article  CAS  Google Scholar 

  19. Kittler, R. et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. Nature Cell Biol. 9, 1401–1412 (2007).

    Article  CAS  Google Scholar 

  20. Silva, J. M. et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319, 617–620 (2008).

    Article  CAS  Google Scholar 

  21. Yu, H. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol. Cell 27, 3–16 (2007).

    Article  CAS  Google Scholar 

  22. Poon, R. Y. & Hunter, T. Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science 270, 90–93 (1995).

    Article  CAS  Google Scholar 

  23. Zimmerman, W. C. & Erikson, R. L. Polo-like kinase 3 is required for entry into S phase. Proc. Natl Acad. Sci. USA 104, 1847–1852 (2007).

    Article  CAS  Google Scholar 

  24. Listovsky, T. et al. Mammalian Cdh1/Fzr mediates its own degradation. EMBO J. 23, 1619–1626 (2004).

    Article  CAS  Google Scholar 

  25. Fontijn, R. D. et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol. Cell. Biol. 21, 2944–2955 (2001).

    Article  CAS  Google Scholar 

  26. Theis, M., Si, K. & Kandel, E. R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl Acad. Sci. USA 100, 9602–9607 (2003).

    Article  CAS  Google Scholar 

  27. Huang, Y. S., Kan, M. C., Lin, C. L. & Richter, J. D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    Article  CAS  Google Scholar 

  28. Pique, M., Lopez, J. M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  CAS  Google Scholar 

  29. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77, 8957–8961 (2003).

    Article  CAS  Google Scholar 

  30. Popov, N., Wahlstrom, T., Hurlin, P. J. & Henriksson, M. Mnt transcriptional repressor is functionally regulated during cell cycle progression. Oncogene 24, 8326–8337 (2005).

    Article  CAS  Google Scholar 

  31. Vassilev, L. T. et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl Acad. Sci. USA 103, 10660–10665 (2006).

    Article  CAS  Google Scholar 

  32. Cho, R. J. et al. Transcriptional regulation and function during the human cell cycle. Nature Genet. 27, 48–54 (2001).

    Article  CAS  Google Scholar 

  33. Orlando, D. A. et al. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453, 944–947 (2008).

    Article  CAS  Google Scholar 

  34. Bahler, J. Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev. Genet. 39, 69–94 (2005).

    Article  CAS  Google Scholar 

  35. Belloc, E., Pique, M. & Mendez, R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem. Soc. Trans. 36, 665–670 (2008).

    Article  CAS  Google Scholar 

  36. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  37. Goldstrohm, A. C. & Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nature Rev. Mol. Cell Biol. 9, 337–344 (2008).

    Article  CAS  Google Scholar 

  38. Eliscovich, C., Peset, I., Vernos, I. & Mendez, R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nature Cell Biol. 10, 858–865 (2008).

    Article  CAS  Google Scholar 

  39. Walker, J., de Melo Neto, O. & Standart, N. Gel retardation and UV-crosslinking assays to detect specific RNA-protein interactions in the 5′ or 3′ UTRs of translationally regulated mRNAs. Methods Mol. Biol. 77, 365–378 (1998).

    CAS  PubMed  Google Scholar 

  40. Belloc, E. & Mendez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008).

    Article  CAS  Google Scholar 

  41. de Moor, C. H. & Richter, J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 18, 2294–2303 (1999).

    Article  CAS  Google Scholar 

  42. Pique, M., Lopez, J. M. & Mendez, R. Cytoplasmic mRNA polyadenylation and translation assays. Methods Mol. Biol. 322, 183–198 (2006).

    Article  CAS  Google Scholar 

  43. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  44. Sancho, M., Diani, E., Beato, M. & Jordan, A. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet. 4, e1000227 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Anti-MS2 antibodies were provided by Mike Kiledjian (Rutgers University), anti-CPSF100 antibodies by James Manley (Columbia University), and anti-CPEB1 antibodies by Dominique Weil (Institut Andre Lwoff). We thank Oscar Fornas (Flow Cytometry Facility at UPF) and Lauro Sumoy (Microarray Facility) for technical advice, and members of the Méndez and Fátima Gebauer laboratory, Mercedes Fernández, Juan Valcárcel, Josep Vilardell, Roderic Guigó and other colleagues from the Gene Expression Program, for helpful advice and critically reading the manuscript. This work was supported by grants from the Spanish Ministry of Science and Innovation, Fundació 'Marató de TV3' to R.M., and FIS and Marie Curie Reintegration grants to I.N. R.M. is a recipient of a contract from the I3 contract (MEC), and I.N. from the 'Programa Ramón y Cajal' (MEC).

Author information

Authors and Affiliations

Authors

Contributions

J.G. performed the experiments shown in Figs 3b–d, 4b and 5a. P.G.F performed the motif analysis of 3′ UTR sequences shown in Supplementary Information, Tables S5–S7. I.N. performed the rest of the experiments. I.N. and R.M. contributed to the experimental design and prepared the manuscript.

Corresponding authors

Correspondence to Isabel Novoa or Raul Mendez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1569 kb)

Supplementary Information

Supplementary Table 1 (XLS 34 kb)

Supplementary Information

Supplementary Table 2 (XLS 42 kb)

Supplementary Information

Supplementary Table 3 (XLS 52 kb)

Supplementary Information

Supplementary Table 4 (XLS 31 kb)

Supplementary Information

Supplementary Table 5 (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoa, I., Gallego, J., Ferreira, P. et al. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 12, 447–456 (2010). https://doi.org/10.1038/ncb2046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing