Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction

Abstract

During interphase, centrosomes are held together by a proteinaceous linker that connects the proximal ends of the mother and daughter centriole. This linker is disassembled at the onset of mitosis in a process known as centrosome disjunction, thereby facilitating centrosome separation and bipolar spindle formation. The NIMA (never in mitosis A)-related kinase Nek2A is implicated in disconnecting the centrosomes through disjoining the linker proteins C-Nap1 and rootletin. However, the mechanisms controlling centrosome disjunction remain poorly understood. Here, we report that two Hippo pathway components, the mammalian sterile 20-like kinase 2 (Mst2) and the scaffold protein Salvador (hSav1), directly interact with Nek2A and regulate its ability to localize to centrosomes, and phosphorylate C-Nap1 and rootletin. Furthermore, we demonstrate that the hSav1–Mst2–Nek2A centrosome disjunction pathway becomes essential for bipolar spindle formation on partial inhibition of the kinesin-5 Eg5. We propose that hSav1–Mst2–Nek2A and Eg5 have distinct, but complementary functions, in centrosome disjunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions between Nek2A, C-Nap1, hSav1 and Mst2.
Figure 2: hSav1 and Mst1/Mst2 are responsible for the centrosomal localization of Nek2.
Figure 3: Mst1/Mst2 and hSav1 regulate the centrosomal function and dynamics of Nek2A.
Figure 4: Mst2 phosphorylates Nek2A and regulates the ability of Nek2A to induce centrosome disjunction.
Figure 5: hSav1, Mst1/Mst2 and Nek2A regulate centrosome disjunction together with Eg5.
Figure 6: C-Nap1 phosphorylation and displacement is regulated by hSav1, Mst1/Mst2 and Nek2A.
Figure 7: Centrosomal localization of the linker protein rootletin is regulated by hSav1, Mst1/Mst2 and Nek2A.
Figure 8: Model for centrosome separation in mitotic entry.

Similar content being viewed by others

References

  1. Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  Google Scholar 

  2. Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol. 8, 451–463 (2007).

    Article  CAS  Google Scholar 

  3. Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell-cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    Article  CAS  Google Scholar 

  4. Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell-cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).

    Article  CAS  Google Scholar 

  5. Yang, J., Adamian, M. & Li, T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 17, 1033–1040 (2006).

    Article  CAS  Google Scholar 

  6. Faragher, A. J. & Fry, A. M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14, 2876–2889 (2003).

    Article  CAS  Google Scholar 

  7. Fry, A. M., Meraldi, P. & Nigg, E. A. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 17, 470–481 (1998).

    Article  CAS  Google Scholar 

  8. Mayor, T., Hacker, U., Stierhof, Y. D. & Nigg, E. A. The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J. Cell Sci. 115, 3275–3284 (2002).

    CAS  PubMed  Google Scholar 

  9. Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27–33 (2005).

    Article  CAS  Google Scholar 

  10. Bahmanyar, S. et al. β-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 22, 91–105 (2008).

    Article  CAS  Google Scholar 

  11. Fry, A. M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194 (2002).

    Article  CAS  Google Scholar 

  12. Hames, R. S. & Fry, A. M. Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis. Biochemical J. 361, 77–85 (2002).

    Article  CAS  Google Scholar 

  13. Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).

    Article  CAS  Google Scholar 

  14. Zhao, B., Lei, Q. Y. & Guan, K. L. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr. Opin. Cell Biol. 20, 638–646 (2008).

    Article  CAS  Google Scholar 

  15. Lee, J. H. et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 27, 1231–1242 (2008).

    Article  CAS  Google Scholar 

  16. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  Google Scholar 

  17. Yang, X. et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat. Cell Biol. 6, 609–617 (2004).

    Article  CAS  Google Scholar 

  18. Yabuta, N. et al. Lats2 is an essential mitotic regulator required for the coordination of cell division. J. Biol. Chem. 282, 19259–19271 (2007).

    Article  CAS  Google Scholar 

  19. Hergovich, A. et al. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr. Biol. 19, 1692–1702 (2009).

    Article  CAS  Google Scholar 

  20. Chiba, S., Ikeda, M., Katsunuma, K., Ohashi, K. & Mizuno, K. MST2- and Furry-mediated activation of NDR1 kinase is critical for precise alignment of mitotic chromosomes. Curr. Biol. 19, 675–681 (2009).

    Article  CAS  Google Scholar 

  21. Guo, C. et al. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr. Biol. 17, 700–705 (2007).

    Article  CAS  Google Scholar 

  22. Toji, S. et al. The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells 9, 383–397 (2004).

    Article  CAS  Google Scholar 

  23. Valverde, P. Cloning, expression, and mapping of hWW45, a novel human WW domain-containing gene. Biochem. Biophys. Res. Commun. 276, 990–998 (2000).

    Article  CAS  Google Scholar 

  24. Hwang, E. et al. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc. Natl Acad. Sci. USA. 104, 9236–9241 (2007).

    Article  CAS  Google Scholar 

  25. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914–920 (2003).

    Article  CAS  Google Scholar 

  26. Callus, B. A., Verhagen, A. M. & Vaux, D. L. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 273, 4264–4276 (2006).

    Article  CAS  Google Scholar 

  27. Fry, A. M., Schultz, S. J., Bartek, J. & Nigg, E. A. Substrate-specificity and cell-cycle regulation of the Nek2 protein-kinase, a potential human homolog of the mitotic regulator Nima of Aspergillus nidulans. J. Biol. Chem. 270, 12899–12905 (1995).

    Article  CAS  Google Scholar 

  28. Wei, X., Shimizu, T. & Lai, Z. C. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J. 26, 1772–1781 (2007).

    Article  CAS  Google Scholar 

  29. Hames, R. S. et al. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol. Biol. Cell 16, 1711–1724 (2005).

    Article  CAS  Google Scholar 

  30. Sonn, S., Khang, I., Kim, K. & Rhee, K. Suppression of Nek2A in mouse early embryos confirms its requirement for chromosome segregation. J. Cell Sci. 117, 5557–5566 (2004).

    Article  CAS  Google Scholar 

  31. Fletcher, L., Cerniglia, G. J., Nigg, E. A., Yend, T. J. & Muschel, R. J. Inhibition of centrosome separation after DNA damage: a role for Nek2. Radiat. Res. 162, 128–135 (2004).

    Article  CAS  Google Scholar 

  32. Sawin, K. E., LeGuellec, K., Philippe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543 (1992).

    Article  CAS  Google Scholar 

  33. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  34. Vanneste, D., Takagi, M., Imamoto, N. & Vernos, I. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr. Biol. 19, 1712–1717 (2009).

    Article  CAS  Google Scholar 

  35. Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U. & Giannis, A. Synthesis and biological evaluation of novel EG5 inhibitors. Chembiochem 6, 2005–2013 (2005).

    Article  CAS  Google Scholar 

  36. Oh, H. & Irvine, K. D. Yorkie: the final destination of Hippo signaling. Trends Cell Biol. 20, 410–417 (2010).

    Article  CAS  Google Scholar 

  37. Liu, L., Guo, C., Dammann, R., Tommasi, S. & Pfeifer, G. P. RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene 27, 6175–6186 (2008).

    Article  CAS  Google Scholar 

  38. Praskova, M., Xia, F. & Avruch, J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol. 18, 311–321 (2008).

    Article  CAS  Google Scholar 

  39. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat. Cell Biol. 8, 607–614 (2006).

    Article  CAS  Google Scholar 

  40. Godinho, S. A., Kwon, M. & Pellman, D. Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev. 28, 85–98 (2009).

    Article  CAS  Google Scholar 

  41. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  Google Scholar 

  42. Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA. 107, 1437–1442 (2010).

    Article  CAS  Google Scholar 

  43. Fry, A. M., Arnaud, L. & Nigg, E. A. Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J. Biol. Chem. 274, 16304–16310 (1999).

    Article  CAS  Google Scholar 

  44. Poser, I. et al. BAC Transgeneomics: a high-throughput method for exploration of protein function in mammals. Nat. Methods 5, 409–415 (2008).

    Article  CAS  Google Scholar 

  45. Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics 7, 282–289 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG grant Schi295/3. A.M.F. acknowledges support from the Wellcome Trust, Cancer Research UK and the Association for International Cancer Research (AICR). We acknowledge A. Khodjakov for the RPE-1 centrin–GFP cell line, T. Hyman for the LAP–Nek2A cell line and T. Mayer for Eg5 antibodies and VS83 inhibitor. We are grateful to O. Gruss and G. Pereira for helpful comments and A. Khmelinskii for critical reading of the manuscript. We thank T. Ruppert for MS/MS analysis and the Nikon Imaging Center (Heidelberg, Germany) for FRAP experiments. We also thank E. Eroglu and G. Bozkurt for their help with protein purification, and E. Ercan for help with cell culture.

Author information

Authors and Affiliations

Authors

Contributions

B.R.M., A.M.F. and E.S. designed the experiments; B.R.M performed most of the experiments, C.L., J.E.B. and T.H. performed experiments with phospho-specific antibodies. S.R.S purified the GFP binder. B.R.M and E.S. wrote the manuscript with help from A.M.F.

Corresponding author

Correspondence to Elmar Schiebel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardin, B., Lange, C., Baxter, J. et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 12, 1166–1176 (2010). https://doi.org/10.1038/ncb2120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing