Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria

Abstract

IRGM, a human immunity-related GTPase, confers autophagic defence against intracellular pathogens by an unknown mechanism. Here, we report an unexpected mode of IRGM action. IRGM demonstrated differential affinity for the mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd, but not IRGMb splice isoforms, caused mitochondrial depolarization and autophagy-independent, but Bax/Bak-dependent, cell death. By acting on mitochondria, IRGM confers autophagic protection or cell death, explaining IRGM action both in defence against tuberculosis and in the damaging inflammation caused by Crohn's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IRGM localizes to mitochondria.
Figure 2: IRGM co-fractionates with mitochondria and localizes to their inner membrane or matrix.
Figure 3: IRGM affects mitochondrial fission.
Figure 4: Relationship between mitochondrial fission and autophagy and roles of IRGM, DRP1 and FIS1 in autophagic control of mycobacteria.
Figure 5: IRGMd binds to cardiolipin and causes loss of mitochondrial membrane potential.
Figure 6: IRGMd translocates to mitochondria, induces mitochondrial fragmentation and causes loss of mitochondrial ΔΨm independent of autophagic, but dependent on apoptotic, machinery.
Figure 7: IRGMd induces cell death.
Figure 8: Comparison of IRGMa, IRGMb and IRGMc effects.

Similar content being viewed by others

References

  1. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  2. Kundu, M. & Thompson, C. B. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol. 3, 427–455 (2008).

    Article  CAS  Google Scholar 

  3. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).

    Article  CAS  Google Scholar 

  4. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  Google Scholar 

  5. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007).

    Article  CAS  Google Scholar 

  6. Munz, C. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27, 423–449 (2009).

    Article  CAS  Google Scholar 

  7. Deretic, V. & Levine, B. Autophagy, immunity and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).

    Article  CAS  Google Scholar 

  8. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  Google Scholar 

  9. Kyei, G. B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186, 255–268 (2009).

    Article  CAS  Google Scholar 

  10. Blanchet, F. P. et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010).

    Article  CAS  Google Scholar 

  11. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    Article  CAS  Google Scholar 

  12. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    Article  CAS  Google Scholar 

  13. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  Google Scholar 

  14. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  Google Scholar 

  15. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  Google Scholar 

  16. Delgado, M. et al. Autophagy and pattern recognition receptors in innate immunity. Immunol. Rev. 227, 189–202 (2009).

    Article  CAS  Google Scholar 

  17. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  Google Scholar 

  18. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  Google Scholar 

  19. Ling, Y. M. et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 2063–2071 (2006).

    Article  CAS  Google Scholar 

  20. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular Mycobacteria. Science 313, 1438–1441 (2006).

    Article  CAS  Google Scholar 

  21. Feng, C. G. et al. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-γ-induced cell death. Nat. Immunol. 9, 1279–1287 (2008).

    Article  CAS  Google Scholar 

  22. Howard, J. The IRG proteins: a function in search of a mechanism. Immunobiology 213, 367–375 (2008).

    Article  CAS  Google Scholar 

  23. Bekpen, C. et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 6, R92 (2005).

    Article  Google Scholar 

  24. Bekpen, C. et al. Death and resurrection of the human IRGM gene. PLoS Genet. 5, e1000403 (2009).

    Article  Google Scholar 

  25. Intemann, C. D. et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog. 5, e1000577 (2009).

    Article  Google Scholar 

  26. Burton, P. R. et al. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447, 661–678 (2007).

    Article  CAS  Google Scholar 

  27. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    Article  CAS  Google Scholar 

  28. Craddock, N. et al. Genome-wide association study of CNVs in 16, 000 cases of eight common diseases and 3, 000 shared controls. Nature 464, 713–720 (2010).

    Article  CAS  Google Scholar 

  29. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  Google Scholar 

  30. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    Article  CAS  Google Scholar 

  31. Gomes, L. C. & Scorrano, L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim. Biophys. Acta 1777, 860–866 (2008).

    Article  CAS  Google Scholar 

  32. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  Google Scholar 

  33. Karbowski, M., Jeong, S. Y. & Youle, R. J. Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027–1039 (2004).

    Article  CAS  Google Scholar 

  34. Tatsuta, T. & Langer, T. Quality control of mitochondria: protection against neurodegeneration and ageing. Embo J. 27, 306–314 (2008).

    Article  CAS  Google Scholar 

  35. Dagda, R. K. et al. Loss of pink1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855 (2009).

    Article  CAS  Google Scholar 

  36. Benard, G. et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848 (2007).

    Article  CAS  Google Scholar 

  37. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. Embo J. 26, 1749–1760 (2007).

    Article  CAS  Google Scholar 

  38. Takahashi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9, 1142–1151 (2007).

    Article  CAS  Google Scholar 

  39. Yoon, Y., Krueger, E. W., Oswald, B. J. & McNiven, M. A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell Biol. 23, 5409–5420 (2003).

    Article  CAS  Google Scholar 

  40. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  Google Scholar 

  41. Tiwari, S., Choi, H. P., Matsuzawa, T., Pypaert, M. & MacMicking, J. D. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3, 4)P(2) and PtdIns(3, 4, 5)P(3) promotes immunity to mycobacteria. Nat. Immunol. 10, 907–917 (2009).

    Article  CAS  Google Scholar 

  42. Schug, Z. T. & Gottlieb, E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim. Biophys. Acta 1788, 2022–2031 (2009).

    Article  CAS  Google Scholar 

  43. Wasiak, S., Zunino, R. & McBride, H. M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450 (2007).

    Article  CAS  Google Scholar 

  44. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    Article  CAS  Google Scholar 

  45. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    Article  CAS  Google Scholar 

  46. Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005).

    Article  CAS  Google Scholar 

  47. Arnoult, D. et al. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr. Biol. 15, 2112–2118 (2005).

    Article  CAS  Google Scholar 

  48. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  Google Scholar 

  49. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  Google Scholar 

  50. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1 and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    Article  CAS  Google Scholar 

  51. Estaquier, J. & Arnoult, D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 14, 1086–1094 (2007).

    Article  CAS  Google Scholar 

  52. Degenhardt, K., Sundararajan, R., Lindsten, T., Thompson, C. & White, E. Bax and Bak independently promote cytochrome c release from mitochondria. J. Biol. Chem. 277, 14127–14134 (2002).

    Article  CAS  Google Scholar 

  53. Ricci, J. E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004).

    Article  CAS  Google Scholar 

  54. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  Google Scholar 

  55. Bianchi, M. E. & Manfredi, A. A. High-mobility group Box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 220, 35–46 (2007).

    Article  CAS  Google Scholar 

  56. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    Article  CAS  Google Scholar 

  57. Gebert, N. et al. Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr. Biol. 19, 2133–2139 (2009).

    Article  CAS  Google Scholar 

  58. Ow, Y. P., Green, D. R., Hao, Z. & Mak, T. W. Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542 (2008).

    Article  CAS  Google Scholar 

  59. DeVay, R. M. et al. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793–803 (2009).

    Article  CAS  Google Scholar 

  60. Oberst, A., Bender, C. & Green, D. R. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 15, 1139–1146 (2008).

    Article  CAS  Google Scholar 

  61. Kaiser, F., Kaufmann, S. H. & Zerrahn, J. IIGP, a member of the IFN inducible and microbial defense mediating 47 kDa GTPase family, interacts with the microtubule binding protein hook3. J. Cell Sci. 117, 1747–1756 (2004).

    Article  CAS  Google Scholar 

  62. Antonsson, B., Montessuit, S., Sanchez, B. & Martinou, J. C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276, 11615–11623 (2001).

    Article  CAS  Google Scholar 

  63. Ponpuak, M., Delgado, M. A., Elmaoued, R. A. & Deretic, V. Monitoring autophagy during Mycobacterium tuberculosis infection. Methods Enzymol. 452, 345–361 (2009).

    Article  CAS  Google Scholar 

  64. Tasdemir, E. et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10, 676–687 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AI069345, RC1AI086845 and AI42999, a grant from Crohn's & Colitis Foundation of America and a grant from the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.B.S., W.O., I.V., J.N., M.D., E.R., M.P. and S.M. carried out planning, experimental work and data analysis. E.W. and M.K. contributed MEFs and protocols for their use. V.D. carried out project planning, experimental work and wrote the manuscript.

Corresponding author

Correspondence to Vojo Deretic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1369 kb)

Supplementary Movie 1

Supplementary Information (MOV 4924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Ornatowski, W., Vergne, I. et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12, 1154–1165 (2010). https://doi.org/10.1038/ncb2119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing