Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells

Abstract

Microtubules are indispensable for Golgi complex assembly and maintenance, which are integral parts of cytoplasm organization during interphase in mammalian cells. Here, we show that two discrete microtubule subsets drive two distinct, yet simultaneous, stages of Golgi assembly. In addition to the radial centrosomal microtubule array, which positions the Golgi in the centre of the cell, we have identified a role for microtubules that form at the Golgi membranes in a manner dependent on the microtubule regulators CLASPs. These Golgi-derived microtubules draw Golgi ministacks together in tangential fashion and are crucial for establishing continuity and proper morphology of the Golgi complex. We propose that specialized functions of these two microtubule arrays arise from their specific geometries. Further, we demonstrate that directional post-Golgi trafficking and cell migration depend on Golgi-associated CLASPs, suggesting that correct organization of the Golgi complex by microtubules is essential for cell polarization and motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two-stage process of Golgi assembly requires CLASPs.
Figure 2: Golgi assembly occurs in 2 stages after mitotic exit.
Figure 3: Golgi ministack clustering by Golgi-derived and centrosomal microtubules.
Figure 4: Golgi assembly depends on directionality of two microtubule subsets and on dynein activity.
Figure 5: CLASPs at the Golgi determine ribbon morphology.
Figure 6: Golgi fragmentation in CLASP-depleted cells results in diminished enzyme mobility within the Golgi complex.
Figure 7: CLASP-dependent microtubules polarize trafficking to the cell front.
Figure 8: CLASP-dependent microtubules regulate directional cell migration.

Similar content being viewed by others

References

  1. Walczak, C. E. and Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev.Cytol. 265, 111–158 (2008).

    Article  CAS  Google Scholar 

  2. Karsenti, E. et al. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. Cell Biol. 98, 1730–1745 (1984).

    Article  CAS  Google Scholar 

  3. Zhai, Y. et al. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135, 201–214 (1996).

    Article  CAS  Google Scholar 

  4. Bulinski, J. C., Richards, J. E. & Piperno, G. Posttranslational modifications of α tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J. Cell Biol. 106, 1213–1220 (1988).

    Article  CAS  Google Scholar 

  5. Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106–112 (2004).

    Article  CAS  Google Scholar 

  6. O'Connell, C. B. and Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    Article  CAS  Google Scholar 

  7. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell. 12, 917–930 (2007).

    Article  CAS  Google Scholar 

  8. Tang, D. et al. Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J. Biol. Chem. 283, 6085–6094 (2008).

    Article  CAS  Google Scholar 

  9. Cole, N. B. et al. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  Google Scholar 

  10. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).

    Article  CAS  Google Scholar 

  11. Burkhardt, J. K., The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim. Biophys. Acta 1404, 113–126 (1998).

    Article  CAS  Google Scholar 

  12. Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    Article  CAS  Google Scholar 

  13. Bornens, M. Organelle positioning and cell polarity. Nature Rev. Mol. Cell Biol. 9, 874–886 (2008).

    Article  CAS  Google Scholar 

  14. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  Google Scholar 

  15. Storrie, B. & Yang, W. Dynamics of the interphase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly. Biochim. Biophys. Acta 1404, 127–137 (1998).

    Article  CAS  Google Scholar 

  16. Faire, K. et al. E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics. J. Cell Sci. 112, 4243–4255 (1999).

    CAS  Google Scholar 

  17. Burkhardt, J. K. et al. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  18. Roghi, C. & Allan, V. J. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell Sci. 112, 4673–4685 (1999).

    CAS  PubMed  Google Scholar 

  19. Quintyne, N. J. & Schroer, T. A. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159, 245–254 (2002).

    Article  CAS  Google Scholar 

  20. Mellman, I. & Simons, K. The Golgi complex: in vitro veritas? Cell 68, 829–840 (1992).

    Article  CAS  Google Scholar 

  21. Puthenveedu, M. A. et al. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nature Cell Biol. 8, 238–248 (2006).

    Article  CAS  Google Scholar 

  22. Feinstein, T. N. & Linstedt, A. D. GRASP55 regulates Golgi ribbon formation. Mol. Biol. Cell 19, 2696–2707 (2008).

    Article  CAS  Google Scholar 

  23. Lippincott-Schwartz, J., Cole, N. & Presley, J. Unravelling Golgi membrane traffic with green fluorescent protein chimeras. Trends Cell Biol. 8, 16–20 (1998).

    Article  CAS  Google Scholar 

  24. Taraska, J. W. et al. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl Acad. Sci. USA 100, 2070–2075 (2003).

    Article  CAS  Google Scholar 

  25. Bruun, A., Tornqvist, K. & Ehinger, B. Neuropeptide Y (NPY) immunoreactive neurons in the retina of different species. Histochemistry 86, 135–140 (1986).

    Article  CAS  Google Scholar 

  26. Yadav, S., Puri, S. & Linstedt, A. D. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol. Biol. Cell 20, 1728–1736 (2009).

    Article  CAS  Google Scholar 

  27. Prigozhina, N. L. & Waterman-Storer, C. M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr. Biol. 14, 88–98 (2004).

    Article  CAS  Google Scholar 

  28. Small, J. V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin.Cell Biol. 15, 40–47 (2003).

    Article  CAS  Google Scholar 

  29. Noritake, J. et al. IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118, 2085–2092 (2005).

    Article  CAS  Google Scholar 

  30. Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol. 16, 2259–2264 (2006).

    Article  CAS  Google Scholar 

  31. Daly, R. J. Cortactin signalling and dynamic actin networks. Biochem. J. 382, 13–25 (2004).

    Article  CAS  Google Scholar 

  32. Cytrynbaum, E. N., Rodionov, V. & Mogilner, A. Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci. 117, 1381–1397 (2004).

    Article  CAS  Google Scholar 

  33. Linstedt, A. D. Positioning the Golgi apparatus. Cell 118, 271–272 (2004).

    Article  CAS  Google Scholar 

  34. Rios, R. M. et al. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323–335 (2004).

    Article  CAS  Google Scholar 

  35. Shorter, J. & Warren, G. Golgi architecture and inheritance. Annu. Rev. Cell Dev. Biol. 18, 379–420 (2002).

    Article  CAS  Google Scholar 

  36. Puthenveedu, M. A. & Linstedt, A. D. Subcompartmentalizing the Golgi apparatus. Curr. Opin. Cell Biol. 17, 369–375 (2005).

    Article  CAS  Google Scholar 

  37. Rivero, S. et al. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. advance online publication doi:10.1038/emboj.2009.47 (26 February 2009).

    Article  CAS  Google Scholar 

  38. Hayes, G. L. et al. Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans Golgi. Mol. Biol. Cell 20, 209–217 (2009).

    Article  CAS  Google Scholar 

  39. Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell 11, 21–32 (2006).

    Article  CAS  Google Scholar 

  40. Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol. 169, 929–939 (2005).

    Article  CAS  Google Scholar 

  41. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    Article  CAS  Google Scholar 

  42. Patel, H. et al. The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium. J. Cell Sci. 121, 1159–1164 (2008).

    Article  CAS  Google Scholar 

  43. Thomas, J. H. & Wieschaus, E. src64 and tec29 are required for microfilament contraction during Drosophila cellularization. Development 131, 863–871 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank James Goldenring, Mathew Tyska and Ryoma Ohi for helpful discussions, and Anna Akhmanova, Laura A. Lee and Steven K. Hanks for critical reading of the manuscript. This study was funded by NIH NIGMS grant 1R01GM078373-01 to I.K. and a pilot project to I.K. from NIH NCI GI SPORE grant P50CA095103. A.R.R.M. was supported by Fundação para a Ciência e Tecnologia fellowship SFRH/BD/32976/2006 and by grant PTDC/SAU-OBD/66113/2006 from Fundacao para a Ciencia e a Tecnologia of Portugal. P.M.M. was supported by American Heart Predoctoral grant 09PRE2260729.

Author information

Authors and Affiliations

Authors

Contributions

P.M.M. performed most experiments and data analysis and co-wrote the manuscript. A.W.F. contributed to experiments and data quantification. A.R.R.M. contributed to mitosis experiments. N.E. contributed to experiments and provided technical assistance. A.E. performed microtubule tip tracking experiments for Fig. 4a, b. I.K. contributed to experiments, directed all of the work and project planning, and co-wrote the manuscript.

Corresponding author

Correspondence to Irina Kaverina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 840 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3431 kb)

Supplementary Information

Supplementary Movie 2 (MOV 5633 kb)

Supplementary Information

Supplementary Movie 3 (MOV 5113 kb)

Supplementary Information

Supplementary Movie 4 (MOV 8416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, P., Folkmann, A., Maia, A. et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11, 1069–1080 (2009). https://doi.org/10.1038/ncb1920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing