Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis

Abstract

Although centrosomes serve to organize microtubules in most cell types, oocyte spindles form and mediate meiotic chromosome segregation in their absence. Here, we used high-resolution imaging of both bipolar and experimentally generated monopolar spindles in Caenorhabditis elegans to reveal a surprising organization of microtubules and chromosomes within acentrosomal structures. We found that homologous chromosome pairs (bivalents) are surrounded by microtubule bundles running along their sides, whereas microtubule density is extremely low at chromosome ends despite a high concentration of kinetochore proteins at those regions. Furthermore, we found that the chromokinesin KLP-19 (kinesin-like protein 19) is targeted to a ring around the centre of each bivalent and provides a polar ejection force that is required for congression. Together, these observations create a new picture of chromosome–microtubule association in acentrosomal spindles and reveal a mechanism by which metaphase alignment can be achieved using this organization. Specifically, we propose that ensheathment by lateral microtubule bundles places spatial constraints on the chromosomes, thereby promoting biorientation, and that localized motors mediate movement along these bundles, thereby promoting alignment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KLP-18 and MESP-1 are required for the bipolarity of acentrosomal oocyte meiotic spindles.
Figure 2: Chromosomes are ensheathed by lateral microtubule bundles in acentrosomal spindles.
Figure 3: Localization of the chromokinesin KLP-19 to a ring at the mid-bivalent is regulated by the chromosome passenger complex.
Figure 4: KLP-19 provides a polar ejection force to position meiotic chromosomes.
Figure 5: Model of chromosome organization and congression on acentrosomal spindles.

Similar content being viewed by others

References

  1. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    Article  CAS  Google Scholar 

  2. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    Article  CAS  Google Scholar 

  3. Canman, J. C. et al. Determining the position of the cell division plane. Nature 424, 1074–1078 (2003).

    Article  CAS  Google Scholar 

  4. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome-spindle attachments during cell division. Nature Cell Biol. 6, 232–237 (2004).

    Article  CAS  Google Scholar 

  5. Segbert, C. et al. KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol. Biol. Cell 14, 4458–4469 (2003).

    Article  CAS  Google Scholar 

  6. Albertson, D. G. & Thomson, J. N. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1, 15–26 (1993).

    Article  CAS  Google Scholar 

  7. Howe, M., McDonald, K. L., Albertson, D. G. & Meyer, B. J. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J. Cell Biol. 153, 1227–1238 (2001).

    Article  CAS  Google Scholar 

  8. Monen, J., Maddox, P. S., Hyndman, F., Oegema, K. & Desai, A. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nature Cell Biol. 7, 1248–1255 (2005).

    Article  Google Scholar 

  9. Mazumdar, M. & Misteli, T. Chromokinesins: multitalented players in mitosis. Trends Cell Biol. 15, 349–355 (2005).

    Article  CAS  Google Scholar 

  10. Powers, J. et al. Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J. Cell Biol. 166, 991–1001 (2004).

    Article  CAS  Google Scholar 

  11. Schumacher, J. M., Golden, A. & Donovan, P. J. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol. 143, 1635–1646 (1998).

    Article  CAS  Google Scholar 

  12. Speliotes, E. K., Uren, A., Vaux, D. & Horvitz, H. R. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol. Cell 6, 211–223 (2000).

    Article  CAS  Google Scholar 

  13. Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).

    Article  CAS  Google Scholar 

  14. Kaitna, S., Pasierbek, P., Jantsch, M., Loidl, J. & Glotzer, M. The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous Chromosomes during meiosis. Curr. Biol. 12, 798–812 (2002).

    Article  CAS  Google Scholar 

  15. Romano, A. et al. CSC-1: a subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J. Cell Biol. 161, 229–236 (2003).

    Article  CAS  Google Scholar 

  16. Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000).

    Article  CAS  Google Scholar 

  17. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  Google Scholar 

  18. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).

    Article  CAS  Google Scholar 

  19. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J. Cell Biol. 111, 1039–1045 (1990).

    Article  CAS  Google Scholar 

  20. Merdes, A. & De Mey, J. The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition. Eur. J. Cell Biol. 53, 313–325 (1990).

    CAS  PubMed  Google Scholar 

  21. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).

    Article  CAS  Google Scholar 

  22. Skold, H. N., Komma, D. J. & Endow, S. A. Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J. Cell Sci. 118, 1745–1755 (2005).

    Article  Google Scholar 

  23. Cullen, C. F., Brittle, A. L., Ito, T. & Ohkura, H. The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster. J. Cell Biol. 171, 593–602 (2005).

    Article  CAS  Google Scholar 

  24. Jang, J. K., Rahman, T. & McKim, K. S. The kinesinlike protein Subito contributes to central spindle assembly and organization of the meiotic spindle in Drosophila oocytes. Mol. Biol. Cell 16, 4684–4694 (2005).

    Article  CAS  Google Scholar 

  25. Jang, J. K., Rahman, T., Kober, V. S., Cesario, J. & McKim, K. S. Misregulation of the kinesin-like protein Subito induces meiotic spindle formation in the absence of chromosomes and centrosomes. Genetics 177, 267–280 (2007).

    Article  CAS  Google Scholar 

  26. Brunet, S. et al. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J. Cell Biol. 146, 1–12 (1999).

    Article  CAS  Google Scholar 

  27. Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007).

    Article  CAS  Google Scholar 

  28. Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49–59 (1996).

    Article  CAS  Google Scholar 

  29. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  30. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  31. Kashina, A. S., Rogers, G. C. & Scholey, J. M. The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochim. Biophys. Acta 1357, 257–271 (1997).

    Article  CAS  Google Scholar 

  32. Mitchison, T. J. et al. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell 16, 3064–3076 (2005).

    Article  CAS  Google Scholar 

  33. Yang, G. et al. Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nature Cell Biol. 9, 1233–1242 (2007).

    Article  CAS  Google Scholar 

  34. Bishop, J. D., Han, Z. & Schumacher, J. M. The Caenorhabditis elegans Aurora B kinase AIR-2 phosphorylates and is required for the localization of a BimC kinesin to meiotic and mitotic spindles. Mol. Biol. Cell 16, 742–756 (2005).

    Article  CAS  Google Scholar 

  35. McNally, K., Audhya, A., Oegema, K. & McNally, F. J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  Google Scholar 

  36. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  Google Scholar 

  37. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  Google Scholar 

  38. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  Google Scholar 

  39. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  Google Scholar 

  40. McCarter, J., Bartlett, B., Dang, T. & Schedl, T. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol. 205, 111–128 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Villeneuve laboratory for support and discussions, R. Heald, V. Indjeian and M. Schvarzstein for comments on the manuscript, J. Monen, P. Maddox and members of the Desai and Oegema laboratories for technical advice, J. Dumont and A. Desai for sharing data before publication, and J. Audhya, B. Bowerman, A. Desai, B. Meyer, J. Powers and J. Schumacher for reagents. Additionally, some strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was supported by an NIH grant (RO1 GM53804) to A.M.V.; S.M.W. was a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-#1827-04) and is currently a Special Fellow of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

All experimental data and figures were generated by S.M.W., who also had primary responsibility for experimental design, data analysis and manuscript writing. A.M.V. contributed to experimental design, data analysis and manuscript writing.

Corresponding authors

Correspondence to Sarah M. Wignall or Anne M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 819 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1123 kb)

Supplementary Information

Supplementary Movie 2 (MOV 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wignall, S., Villeneuve, A. Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11, 839–844 (2009). https://doi.org/10.1038/ncb1891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing