Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increasing organismal healthspan by enhancing mitochondrial protein quality control

A Corrigendum to this article was published on 02 February 2012

This article has been updated

Abstract

Degradation of damaged proteins by members of the protein quality control system is of fundamental importance in maintaining cellular homeostasis. In mitochondria, organelles which both generate and are targets of reactive oxygen species (ROS), a number of membrane bound and soluble proteases are essential components of this system. Here we describe the regulation of Podospora anserina LON (PaLON) levels, an AAA+ family serine protease localized in the matrix fraction of mitochondria. Constitutive overexpression of PaLon results in transgenic strains of the fungal ageing model P. anserina showing increased ATP-dependent serine protease activity. These strains display lower levels of carbonylated (aconitase) and carboxymethylated proteins, reduced secretion of hydrogen peroxide and a higher resistance against exogenous oxidative stress. Moreover, they are characterized by an extended lifespan without impairment of vital functions such as respiration, growth and fertility. The reported genetic manipulation proved to be a successful intervention in organismal ageing and it led to an increase in the healthy lifespan, the healthspan, of P. anserina.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of PaLon encoding the LON protease of P.anserina.
Figure 2: Analysis of oxidative stress tolerance and the release of hydrogen peroxide by strains overexpressing PaLon.
Figure 3: Analysis of oxidative protein damage and degradation of oxidized proteins in strains overexpressing PaLon.
Figure 4: Phenotypic and molecular comparisons of independent wild-type and PaLon_OEx strains.

Similar content being viewed by others

Change history

  • 21 December 2011

    In the version of this letter initially published online and in print, the order of inserts in Fig. 3d had been inverted and the picture in Fig. 4e was not that of a juvenile hypha from the PaLon_Ox1 strain. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Osiewacz, H. D. & Hermanns, J. The role of mitochondrial DNA rearrangements in aging and human diseases. Aging (Milano.) 4, 273–286 (1992).

    CAS  Google Scholar 

  2. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  3. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  Google Scholar 

  4. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  Google Scholar 

  5. Gredilla, R., Grief, J. & Osiewacz, H. D. Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp. Gerontol. 41, 439–447 (2006).

    Article  CAS  Google Scholar 

  6. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  Google Scholar 

  7. Lu, B. et al. Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J. Biol. Chem. 282, 17363–17374 (2007).

    Article  CAS  Google Scholar 

  8. Suzuki, C. K., Suda, K., Wang, N. & Schatz, G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264, 891 (1994).

    Article  CAS  Google Scholar 

  9. Bota, D. A., Ngo, J. K. & Davies, K. J. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic. Biol. Med. 38, 665–677 (2005).

    Article  CAS  Google Scholar 

  10. Osiewacz, H. D. Genes, mitochondria and aging in filamentous fungi. Ageing Res. Rev. 1, 425–442 (2002).

    Article  CAS  Google Scholar 

  11. Bulteau, A. L., Szweda, L. I. & Friguet, B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp. Gerontol. 41, 653–657 (2006).

    Article  CAS  Google Scholar 

  12. Osiewacz, H. D., Skaletz, A. & Esser, K. Integrative transformation of the ascomycete Podospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes. Appl. Microbiol. Biotechnol. 35, 38–45 (1991).

    Article  CAS  Google Scholar 

  13. Scheckhuber, C. Q. et al. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nature Cell Biol. 9, 99–105 (2007).

    Article  CAS  Google Scholar 

  14. Ikeda, K. et al. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35, 8075–8083 (1996).

    Article  CAS  Google Scholar 

  15. Bakala, H. et al. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur. J. Biochem. 270, 2295–2302 (2003).

    Article  CAS  Google Scholar 

  16. Bota, D. A. & Davies, K. J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nature Cell Biol. 4, 674–680 (2002).

    Article  CAS  Google Scholar 

  17. Reverter-Branch, Cabiscol, E., Tamarit, J. & Ros, J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J. Biol. Chem. 279, 31983–31989 (2004).

    Article  Google Scholar 

  18. Scheckhuber, C. Q., Rödel, E. & Wüstehube, J. Regulation of mitochondrial dynamics--characterization of fusion and fission genes in the ascomycete Podospora anserina. Biotechnol. J. 3, 781–790 (2008).

    Article  CAS  Google Scholar 

  19. Osiewacz, H. D. & Borghouts, C. Mitochondrial oxidative stress and aging in the filamentous fungus Podospora anserina. Ann. NYAcad. Sci. 908, 31–39 (2000).

    Article  CAS  Google Scholar 

  20. Borghouts, C., Kimpel, E. & Osiewacz, H. D. Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc. Natl. Acad. Sci. U SA 94, 10768–10773 (1997).

    Article  CAS  Google Scholar 

  21. Dufour, E., Boulay, J., Rincheval, V. & Sainsard-Chanet, A. A causal link between respiration and senescence in Podospora anserina. Proc. Natl. Acad. Sci. USA 97, 4138–4143 (2000).

    Article  CAS  Google Scholar 

  22. Stumpferl, S. W., Stephan, O. & Osiewacz, H. D. Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot. Cell 3, 200–211 (2004).

    Article  CAS  Google Scholar 

  23. van Dyck L., Neupert, W. & Langer, T. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev. 12, 1515–1524 (1998).

    Article  CAS  Google Scholar 

  24. Esser, K. Podospora anserina. Handbook of Genetics (ed. R. C. King) 531–551 (Plenum Press, 1974).

    Google Scholar 

  25. Kück, U. et al. The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr. Genet. 9, 373–382 (1985).

    Article  Google Scholar 

  26. Kunstmann, B. & Osiewacz, H. D. Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 7, 651–662 (2008).

    Article  CAS  Google Scholar 

  27. Hamann, A., Krause, K., Werner, A. & Osiewacz, H. D. A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr. Genet. 48, 270–275 (2005).

    Article  CAS  Google Scholar 

  28. Chaveroche, M. K., Ghigo, J. M. & d'Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000).

    Article  CAS  Google Scholar 

  29. Osiewacz, H. D. A versatile shuttle cosmid vector for the efficient construction of genomic libraries and for the cloning of fungal genes. Curr. Genet. 26, 87–90 (1994).

    Article  CAS  Google Scholar 

  30. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  31. Borghouts, C., Werner, A., Elthon, T. & Osiewacz, H. D. Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol. Cell Biol. 21, 390–399 (2001).

    Article  CAS  Google Scholar 

  32. Levine, R. L., Williams, J. A., Stadtman, E. R. & Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357 (1994).

    Article  CAS  Google Scholar 

  33. Nulton-Persson, A. C. & Szweda, L. I. Modulation of mitochondrial function by hydrogen peroxide. J. Biol. Chem. 276, 23357–23361 (2001).

    Article  CAS  Google Scholar 

  34. Hamann, A., Brust, D. & Osiewacz, H. D. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol. Microbiol. 65, 948–958 (2007).

    Article  CAS  Google Scholar 

  35. Schägger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000).

    Article  Google Scholar 

  36. Krause, F. et al. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J. Biol. Chem. 279, 26453–26461 (2004).

    Article  CAS  Google Scholar 

  37. Jung, C., Higgins, C. M. & Xu, Z. Measuring the quantity and activity of mitochondrial electron transport chain complexes in tissues of central nervous system using blue native polyacrylamide gel electrophoresis. Anal. Biochem. 286, 214–223 (2000).

    Article  CAS  Google Scholar 

  38. Nijtmans, L. G., Henderson, N. S. & Holt, I. J. Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 26, 327–334 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Lill and B. Friguet for the antibodies used in this study. H.D.O. was supported by a grant from the Deutsche Forschungsgemeinschaft. Part of the work of H.D.O. was supported by the European Commission (FP6-518230; Proteomage).

Author information

Authors and Affiliations

Authors

Contributions

K.L. and H.D.O. designed the experiments, analysed data and wrote the manuscript; H.D.O. supervised the work and K.L. performed the experiments.

Corresponding author

Correspondence to Heinz D. Osiewacz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luce, K., Osiewacz, H. Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11, 852–858 (2009). https://doi.org/10.1038/ncb1893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing